Abstract
Models of user preferences are an important resource to improve the user experience of recommender systems. Using user feedback static preference models can be adapted over time. Still, if the options to choose from themselves have temporal extent, dynamic preferences have to be taken into account even when answering a single query. In this paper we propose that static preference models could be used in such situations by identifying an appropriate set of features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)
Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)
Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)
Chen, P.M., Kuo, F.C.: An information retrieval system based on a user prole. The Journal of Systems and Software 54 (2000)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)
Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. Ph.D. thesis, University of Waikato (1998)
Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. In: ACM SIGIR Forum, vol. 37, pp. 18–28. ACM, New York (2003)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, Citeseer, vol. 14, pp. 1137–1145 (1995)
Ludwig, B., Mandl, S.: Centering information retrieval to the user. Revue D’intelligence Artificielle 24, 96–120 (2010)
McNee, S., Lam, S., Konstan, J., Riedl, J.: Interfaces for eliciting new user preferences in recommender systems. In: User Modeling 2003, pp. 178–187. Springer, Heidelberg (2003)
Mooney, R., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the Fifth ACM Conference on Digital Libraries, pp. 195–204. ACM, New York (2000)
Öztürk, M., Tsoukiàs, A., Vincke, P.: Preference modelling. Tech. Rep. 2003-34, DIMACS (2003)
Stefanidis, K., Pitoura, E., Vassiliadis, P.: Adding context to preferences. In: Proc. ICDE, Citeseer, pp. 846–855 (2007)
Yao, Y.: Measuring retrieval effectiveness based on user preference of documents. Journal of the American Society for Information Science 46(2), 133–145 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bauereiß, T., Mandl, S., Ludwig, B. (2010). Static Preference Models for Options with Dynamic Extent. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds) KI 2010: Advances in Artificial Intelligence. KI 2010. Lecture Notes in Computer Science(), vol 6359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16111-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-16111-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16110-0
Online ISBN: 978-3-642-16111-7
eBook Packages: Computer ScienceComputer Science (R0)