Skip to main content

Static Preference Models for Options with Dynamic Extent

  • Conference paper
KI 2010: Advances in Artificial Intelligence (KI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6359))

Included in the following conference series:

  • 2753 Accesses

Abstract

Models of user preferences are an important resource to improve the user experience of recommender systems. Using user feedback static preference models can be adapted over time. Still, if the options to choose from themselves have temporal extent, dynamic preferences have to be taken into account even when answering a single query. In this paper we propose that static preference models could be used in such situations by identifying an appropriate set of features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  2. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chen, P.M., Kuo, F.C.: An information retrieval system based on a user prole. The Journal of Systems and Software 54 (2000)

    Google Scholar 

  5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  6. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. Ph.D. thesis, University of Waikato (1998)

    Google Scholar 

  7. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. In: ACM SIGIR Forum, vol. 37, pp. 18–28. ACM, New York (2003)

    Google Scholar 

  8. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, Citeseer, vol. 14, pp. 1137–1145 (1995)

    Google Scholar 

  9. Ludwig, B., Mandl, S.: Centering information retrieval to the user. Revue D’intelligence Artificielle 24, 96–120 (2010)

    Google Scholar 

  10. McNee, S., Lam, S., Konstan, J., Riedl, J.: Interfaces for eliciting new user preferences in recommender systems. In: User Modeling 2003, pp. 178–187. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Mooney, R., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the Fifth ACM Conference on Digital Libraries, pp. 195–204. ACM, New York (2000)

    Chapter  Google Scholar 

  12. Öztürk, M., Tsoukiàs, A., Vincke, P.: Preference modelling. Tech. Rep. 2003-34, DIMACS (2003)

    Google Scholar 

  13. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Adding context to preferences. In: Proc. ICDE, Citeseer, pp. 846–855 (2007)

    Google Scholar 

  14. Yao, Y.: Measuring retrieval effectiveness based on user preference of documents. Journal of the American Society for Information Science 46(2), 133–145 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauereiß, T., Mandl, S., Ludwig, B. (2010). Static Preference Models for Options with Dynamic Extent. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds) KI 2010: Advances in Artificial Intelligence. KI 2010. Lecture Notes in Computer Science(), vol 6359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16111-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16111-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16110-0

  • Online ISBN: 978-3-642-16111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics