Abstract
We present an approach for video based human motion capture using a static multi camera setup. The image data of calibrated video cameras is used to generate dense volumetric reconstructions of a person within the capture volume. The 3d reconstructions are then used to fit a 3d cone model into the data utilizing the Iterative Closest Point (ICP) algorithm. We can show that it is beneficial to use multi camera data instead of a single time of flight camera to gain more robust results in the overall tracking approach.
This work was supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: CVPR 2000, vol. 2, pp. 2126–2133 (2000)
Azad, P., Ude, A., Asfour, T., Dillmann, R.: Stereo-based markerless human motion capture for humanoid robot systems. In: ICRA 2007, pp. 3951–3956. IEEE, Los Alamitos (2007)
Knoop, S., Vacek, S., Dillmann, R.: Sensor fusion for 3d human body tracking with an articulated 3d body model. In: ICRA 2006, pp. 1686–1691. IEEE, Los Alamitos (2006)
Cheung, G.K., Kanade, T., Bouguet, J.Y., Holler, M.: A real time system for robust 3d voxel reconstruction of human motions. In: CVPR 2000, vol. 2, pp. 714–720 (2000)
Rosenhahn, B., Kersting, U.G., Smith, A.W., Gurney, J., Brox, T., Klette, R.: A system for marker-less human motion estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 230–237. Springer, Heidelberg (2005)
Hofmann, M., Gavrila, D.M.: Single-frame 3d human pose recovery from multiple views. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2010. LNCS, vol. 5748, pp. 71–80. Springer, Heidelberg (2009)
Moeslund, T.B., Granum, E.: A survey of computer vision-based human motion capture. Computer Vision and Image Understanding 81, 231–268 (2001)
Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: ICCV 1999 Frame-Rate Workshop, Kerkyra, Greece (September 1999)
Bouguet, J.Y.: Camera calibration toolbox for matlab (2010), http://www.vision.caltech.edu/bouguetj/calib_doc/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feldmann, T., Mihailidis, I., Schulz, S., Paulus, D., Wörner, A. (2010). Online Full Body Human Motion Tracking Based on Dense Volumetric 3D Reconstructions from Multi Camera Setups. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds) KI 2010: Advances in Artificial Intelligence. KI 2010. Lecture Notes in Computer Science(), vol 6359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16111-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-16111-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16110-0
Online ISBN: 978-3-642-16111-7
eBook Packages: Computer ScienceComputer Science (R0)