Abstract
Semantic mapping employs explicit labels to deal with sensor data in robotic mapping processes. In this paper we present a method for boosting performance of spatial mapping, through the use of a probabilistic ontology, expressed with a probabilistic description logic. Reasoning with this ontology allows segmentation and tagging of sensor data acquired by a robot during navigation; hence a robot can construct metric maps topologically. We report experiments with a real robot to validate our approach, thus moving closer to the goal of integrating mapping and semantic labeling processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thrun, S.: Exploring Artificial Intelligence in the New Millennium. In: Robotic mapping: a survey, pp. 1–36. Morgan Kaufmann Publishers, San Francisco (2003)
Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In: IEEE 12th International Conference on Computer Vision, pp. 72–79 (2009)
Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A.: Discriminative learning of Markov random fields for segmentation of 3d scan data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 169–176 (2005)
Nuechter, A.: 3D Robotic Mapping. Springer Tracts in Advanced Robotics (2009)
Galindo, C., Fernndez-Madrigal, J.-A., Gonzlez, J., Saffiotti, A.: Robot task planning using semantic maps. Robotics and Autonomous Systems 11, 955–966 (2008)
Hertzberg, J., Saffiotti, A.: Using semantic knowledge in robotics. Robotics and Autonomous Systems 56, 875–877 (2008)
Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robotics and Autonomous Systems 43, 85–96 (2003)
Limketkai, B., Liao, L., Fox, D.: Relational object maps for mobile robots. In: Proceedings of the International Joint Conference on Artificial Intelligence, vol. 1, pp. 1471–1476 (2005)
Taskar, B., Abbeel, P., Wong, M.-F., Koller, D.: Relation Markov Networks. In: Introduction to Statistical Relational Learning, pp. 175–199. MIT Press, Cambridge (2007)
Wang, J., Domingos, P.: Hybrid Markov logic networks. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 2, pp. 1106–1111 (2008)
Posner, I., Schroeter, D., Newman, P.: Using scene similarity for place labeling. In: Proceedings of the 10th International Symposium on Experimental Robotics (2006)
Zivkovic, Z., Booij, O., Krse, B.: From images to rooms. Robotics and Autonomous Systems 55, 411–418 (2007)
Vasudevan, S., Gchter, S., Nguyen, V., Siegwart, R.: Cognitive maps for mobile robots - an object based approach. Robotics and Autonomous Systems 55, 359–371 (2007)
Lowe, D.G.: Distinctive image features from scale-invariant key-points. International Journal of Computer Vision 60, 91–110 (2004)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: Description Logic Handbook. Cambridge University Press, Cambridge (2002)
Cozman, F.G., Polastro, R.B.: Loopy propagation in a probabilistic description logic. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 120–133. Springer, Heidelberg (2008)
Polastro, R.B., Cozman, F.G.: Inference in probabilistic ontologies with attributive concept descriptions and nominals. In: 4th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW) at the 7th International Semantic Web Conference, ISWC (2008)
Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty modeling in semantic web ontologies. In: Soft Computing in Ontologies and Semantic Web. Studies in Fuzziness and Soft Computing, vol. 204, pp. 3–29. Springer, Heidelberg (2006)
Heinsohn, J.: Probabilistic description logics. In: Conference on Uncertainty in Artificial Intelligence, pp. 311–318 (1994)
Jaeger, M.: Probabilistic reasoning in terminological logics. In: Principles of Knowledge Representation (KR), pp. 461–472 (1994)
Koller, D., Levy, A.Y., Pfeffer, A.: P-CLASSIC: A tractable probablistic description logic. In: AAAI, pp. 390–397 (1997)
Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence 172, 852–883 (2008)
Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In: Conference on Formal Ontology in Information Systems (2006)
Sebastiani, F.: A probabilistic terminological logic for modelling information retrieval. In: Croft, W., Rijsbergen, C.V. (eds.) 17th Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR), pp. 122–130. Springer, Dublin (1994)
Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48, 1–26 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Polastro, R., Corrêa, F., Cozman, F., Okamoto, J. (2010). Semantic Mapping with a Probabilistic Description Logic. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds) Advances in Artificial Intelligence – SBIA 2010. SBIA 2010. Lecture Notes in Computer Science(), vol 6404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16138-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-16138-4_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16137-7
Online ISBN: 978-3-642-16138-4
eBook Packages: Computer ScienceComputer Science (R0)