Skip to main content

Mining Class-Correlated Patterns for Sequence Labeling

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6332))

Abstract

Sequence labeling is the task of assigning a label sequence to an observation sequence. Since many methods to solve this problem depend on the specification of predictive features, automated methods for their derivation are desirable. Unlike in other areas of pattern-based classification, however, no algorithm to directly mine class-correlated patterns for sequence labeling has been proposed so far. We introduce the novel task of mining class-correlated sequence patterns for sequence labeling and present a supervised pattern growth algorithm to find all patterns in a set of observation sequences, which correlate with the assignment of a fixed sequence label no less than a user-specified minimum correlation constraint. From the resulting set of patterns, features for a variety of classifiers can be obtained in a straightforward manner. The efficiency of the approach and the influence of important parameters are shown in experiments on several biological datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  3. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: probabilistic models for segmenting and labeling sequence data. In: Proc. of the 18th Int. Conf. on Machine Learning (ICML 2001), pp. 282–289. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  4. Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  5. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Bringmann, B., Nijssen, S., Zimmermann, A.: Pattern-based classification: a unifying perspective. In: ECML/PKDD-09 Workshop From Local Patterns to Global Models (2009)

    Google Scholar 

  7. Birzele, F., Kramer, S.: A new representation for protein secondary structure prediction based on frequent patterns. Bioinformatics 22, 2628–2634 (2006)

    Article  Google Scholar 

  8. Morishita, S., Sese, J.: Traversing itemset lattices with statistical metric pruning. In: Proc. of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2000), pp. 226–236. ACM, New York (2000)

    Chapter  Google Scholar 

  9. Nijssen, S., Kok, J.N.: Multi-class correlated pattern mining, extended version. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 165–187. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Qiming, C., Dayal, U., Hsu, M.C.: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proc. of the 17th Int. Conf. on Data Engineering (ICDE 2001), pp. 215–224. IEEE Computer Science, Washington (2001)

    Google Scholar 

  11. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. of the 11th Int. Conf. on Data Engineering (ICDE 1995), pp. 3–14. IEEE Computer Society, Washington (1995)

    Google Scholar 

  12. Srikant, R., Agrawal, R.: Mining sequential patterns: generalisations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

    Google Scholar 

  13. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of the 20th Int. Conf. on Very Large Data Bases (VLDB 1994), pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  14. Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Machine Learning 42, 31–60 (2001)

    Article  MATH  Google Scholar 

  15. Ayres, J., Gehrke, J., Yiu, T., Flannik, J.: Sequential pattern mining using a bitmap representation. In: Proc. of the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2002), pp. 429–435. ACM, New York (2002)

    Google Scholar 

  16. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)

    Article  MathSciNet  Google Scholar 

  17. Bay, S.D., Pazzani, M.J.: Detecting change in categorical data: mining contrast sets. In: Proc. of the 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 1999), pp. 302–306. ACM, New York (1999)

    Google Scholar 

  18. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a constraint programming approach. In: Proc. of the 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 647–656. ACM, New York (2009)

    Chapter  Google Scholar 

  19. Hirao, M., Hoshino, H., Shinohara, A., Masayuki, T., Setsuo, A.: A practical algorithm to find the best subsequence patterns. In: Morishita, S., Arikawa, S. (eds.) DS 2000. LNCS (LNAI), vol. 1967, pp. 141–154. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Fischer, J., Mäkinen, V., Välimäki, N.: Space efficient string mining under frequency constraints. In: Proc. of the 8th Int. Conf. on Data Mining (ICDM 2008), pp. 193–202. IEEE Computer Society, Washington (2008)

    Google Scholar 

  21. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34(4), 508–519 (1999)

    Article  Google Scholar 

  22. Kaur, H., Raghava, G.P.S.: An evaluation of beta-turn prediction methods. Bioinformatics 18, 1508–1514 (2002)

    Article  Google Scholar 

  23. Sonnhammer, E.L.L., von Heijne, G., Krogh, A.: A Hidden Markov Model for predicting transmembrane helices in protein sequences. In: Proc. of the 6th Int. Conf. on Intelligent Systems for Molecular Biology (ISMB 1998), pp. 175–182. AAAI Press, Menlo Park (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hopf, T., Kramer, S. (2010). Mining Class-Correlated Patterns for Sequence Labeling. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds) Discovery Science. DS 2010. Lecture Notes in Computer Science(), vol 6332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16184-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16184-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16183-4

  • Online ISBN: 978-3-642-16184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics