Skip to main content

Magnetically Nonlinear Iron Core Characteristics of Transformers Determined by Differential Evolution

  • Chapter
Computational Methods for the Innovative Design of Electrical Devices

Part of the book series: Studies in Computational Intelligence ((SCI,volume 327))

  • 1172 Accesses

Abstract

An optimization based method for determining magnetically nonlinear iron core characteristics of transformers is proposed. The method requires a magnetically nonlinear dynamic model of the transformer as well as voltages and currents measured during the switch-on of unloaded transformer. The magnetically nonlinear iron core characteristic is in the model accounted for in the form of three different approximation functions. Their parameters are determined by the stochastic search algorithm called differential evolution. The optimization goal is to find those values of approximation functions parameters where the root mean square differences between measured and calculated currents are minimal. The impact of individual approximation functions on calculated dynamic responses of the transformer are evaluated by the comparison of measured and calculated results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calabro, S., Coppadoro, F., Crepaz, S.: The measurement of the magnetization characteristics of large power transformers and reactors through d.c. excitation. IEEE Transactions on Power Delivery 1(4), 224–232 (1986)

    Article  Google Scholar 

  2. Štumberger, G., Polajžer, B., Štumberger, B., Toman, M., Dolinar, D.: Evaluation of experimental methods for determining the magnetically nonlinear characteristics of electromagnetic devices. IEEE Transactions on Magnetics 41(10), 4030–4032 (2005)

    Article  Google Scholar 

  3. Dolinar, M., Dolinar, D., Štumberger, G., Polajžer, B., Ritonja, J.: A Three-Phase Core-Type Transformer Iron Core Model With Included Magnetic Cross Saturation. IEEE Transactions on Magnetics 42(10), 2849–2851 (2006)

    Article  Google Scholar 

  4. Ren, Z., Razek, A.: A strong coupled model for analysing dynamic behaviours of non-linear electromechanical systems. IEEE Transactions on Magnetics 30(5), 3252–3255 (1994)

    Article  Google Scholar 

  5. Dolinar, D., Štumberger, G., Grčar, B.: Calculation of the linear induction motor model parameters using finite elements. IEEE Transactions on Magnetics 34(5), 3640–3643 (1998)

    Article  Google Scholar 

  6. Flux2d user’s guide, Cedrat (2000)

    Google Scholar 

  7. Pedra, J., Sainz, L., Corcoles, F., Lopez, R., Salichs, M.: PSPICE computer model of a nonlinear three phase Three-legged transformer. IEEE Transactions on Power Delivery 19(1), 200–207 (2004)

    Article  Google Scholar 

  8. Perez-Rojas, C.: Fitting saturation and hysteresis via arctangent functions. IEEE Power Engineering Review 20(11), 55–57 (2000)

    Article  Google Scholar 

  9. Štumberger, G., Štumberger, B., Dolinar, D., Težak, O.: Nonlinear model of linear synchronous reluctance motor for real time applications. Compel 23(1), 316–327 (2004)

    MATH  Google Scholar 

  10. Price, K.V., Storn, R.V., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Štumberger, G., Žarko, D., Tokic, A., Dolinar, D. (2010). Magnetically Nonlinear Iron Core Characteristics of Transformers Determined by Differential Evolution. In: Wiak, S., Napieralska-Juszczak, E. (eds) Computational Methods for the Innovative Design of Electrical Devices. Studies in Computational Intelligence, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16225-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16225-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16224-4

  • Online ISBN: 978-3-642-16225-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics