Skip to main content

The Flock of Starlings Optimization: Influence of Topological Rules on the Collective Behavior of Swarm Intelligence

  • Chapter
Computational Methods for the Innovative Design of Electrical Devices

Part of the book series: Studies in Computational Intelligence ((SCI,volume 327))

  • 1265 Accesses

Abstract

This chapter presents an algorithm, the flock of starlings optimization that is inspired both to the famous Particle Swarm Optimization (PSO) and to recent naturalistic observations on collective animal behaviour, performed by M. Ballerini et al. The presented algorithm implements a virtual flock governed by topological interactions between its members. The proposed approach has been validated by using classical benchmarks and compared with different versions of PSO. Results have shown that the algorithm has high exploration capability, avoids local minima entrapments and is particularly suitable for multimodal optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, vol. IV, pp. 1942–1948 (1995)

    Google Scholar 

  2. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. Computer Graphics 21(4), 25–34 (1987)

    Article  MathSciNet  Google Scholar 

  3. Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. In: Krasner, S. (ed.) The Ubiquity of Chaos. AAAS Publications, Washington (1990)

    Google Scholar 

  4. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, M., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Science, 1232–1237 (2008)

    Google Scholar 

  5. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, Chichester (2002)

    Google Scholar 

  6. Montes de Oca, M.A., Stutzle, T., Birattari, M., Dorigo, M.: Frankenstein’s PSO: a composite particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation 13, 1120–1132 (2009)

    Article  Google Scholar 

  7. Clerc, M., Kennedy, J.: The particle swarm: explosion stability and convergence in a multi-dimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  8. Riganti Fulginei, F., Salvini, A.: Hysteresis model identification by the Flock-of-Starlings Optimization. International Journal of Applied Electromagnetics and Mechanics 30(3-4), 1383–5416 (2009)

    Google Scholar 

  9. Ali, M.M., Kaelo, P.: Improved particle swarm algorithms for global optimization. Applied Mathematics and Computation, pp. 578–593. Elsevier, Amsterdam (2008)

    Google Scholar 

  10. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1, 67–83 (1997)

    Article  Google Scholar 

  11. Riganti Fulginei, F., Salvini, A.: Comparative Analysis between Modern Heuristics and Hybrid Algorithms. COMPEL 26(2), 264–273 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fulginei, F.R., Salvini, A. (2010). The Flock of Starlings Optimization: Influence of Topological Rules on the Collective Behavior of Swarm Intelligence. In: Wiak, S., Napieralska-Juszczak, E. (eds) Computational Methods for the Innovative Design of Electrical Devices. Studies in Computational Intelligence, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16225-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16225-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16224-4

  • Online ISBN: 978-3-642-16225-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics