Abstract
The most general piecewise rational cubic function (GPRC) for monotone curve design has been extended to the rational bi-cubic partially blended function to preserve the shape of 3D monotone data. The rational bi-cubic partially blended function involves eight parameters in its description (four along each coordinate axes). Out of these eight shape parameters, four are constrained to preserve the shape of monotone data. The rest of the four parameters are free parameters and have been left free for the users to refine the shape of surface as desired. The developed method not only preserves the monotonicity of the data, but also assures that the visual display is smooth and pleasant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beatson, R.K., Ziegler, Z.: Monotonicity preserving surface interpolation. SIAM Journal of Numerical Analysis 22(2), 401–411 (1985)
Carlson, R.E., Fritsch, F.N.: Monotone piecewise bicubic interpolation. SIAM Journal of Numerical Analysis 22, 386–400 (1985)
Casciola, G., Romani, L.: Rational interpolants with tension parameters. In: Lyche, T., Mazure, M., Schumaker, L.L. (eds.) Proceedings of Curve and Surface Design, Saint-Malo 2002, pp. 41–50. Nashboro Press, Brentwood (2003)
Clemens, P., Jütter, B.: Monotonicity-preserving interproximation of B-H- curves. Journal of Computational and Applied Mathematics 196(1), 45–57 (2006)
Costantini, P., Fontanella, F.: Shape preserving bivariate interpolation. SIAM Journal of Numerical Analysis 27(2), 488–506 (1990)
Floater, M.S., Peña, J.M.: Monotonicity preservation on triangles. Mathematics of Computation 69(232), 1505–1519 (2000)
Han, L., Schumaker, L.L.: Fitting monotone surfaces to scattered data using C 1 piecewise cubics. SIAM Journal of Numerical Analysis 23(2), 569–585 (1997)
Hussain, M.Z., Hussain, M.: Visualization of data preserving monotonicity. Applied Mathematics and Computation 190, 1353–1364 (2007)
Hussain, M.Z., Sarfarz, M.: Monotone piecewise rational cubic interpolation. International Journal of Computer Mathematics 86(3), 423–430 (2009)
Sarfraz, M., Butt, S., Hussain, M.Z.: Surfaces for the visualization of scientific data preserving monotonicity. In: Proceedings of the IMA Mathematics for Surfaces VII Conference, Dundee, UK, September 2-5, pp. 479–495 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hussain, M.Z., Hussain, M., Sarfraz, M. (2010). Visualization of Monotone Data by Rational Bi-cubic Interpolation. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VIII. Lecture Notes in Computer Science, vol 6260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16236-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-16236-7_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16235-0
Online ISBN: 978-3-642-16236-7
eBook Packages: Computer ScienceComputer Science (R0)