Abstract
The control of parameters during the execution of bio-inspired algorithms is an open research area. In this paper, we propose a new parameter control strategy for the immune algorithm CLONALG. Our approach is based on reinforcement learning ideas. We focus our attention on controlling the number of clones. Our approach provides an efficient and low cost adaptive technique for parameter control. We use instances of the Travelling Salesman Problem. The results obtained are very encouraging.
Partially Supported by the Fondecyt Project 1080110.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation Conference, New York-United States, July 2002, pp. 11–18. Morgan Kaufmann, San Francisco (2002)
De Castro, L.N., Von Zuben, F.: The clonal selection algorithm with engineering applications. In: Proceedings of Workshop on Artificial Immune Systems and their Apllications, GECCO, pp. 36–37. Morgan Kaufmann, San Francisco (2000)
Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proceedings of the third international conference on Genetic algorithms, pp. 61–69. Morgan Kaufmann, San Francisco (1989)
de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)
Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm parameters. In: Foundations of Genetic Algorithms, vol. 5, pp. 265–286. Morgan Kaufmann, San Francisco (1999)
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)
Eiben, A.E., Marchiori, E., Valkó, V.A.: Evolutionary algorithms with on-the-fly population size adjustment. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 41–50. Springer, Heidelberg (2004)
Garrett, S.M.: Parameter-free, adaptive clonal selection. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 1052–1058 (2004)
Gómez, J.: Self adaptation of operador rates in evolutionary algorithms. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1162–1173. Springer, Heidelberg (2004)
Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary computation: A survey. In: IEEE International Conference on Evolutionary Computation, pp. 65–69 (1997)
Hu, J., Guo, C., Li, T., Yin, J.: Adaptive clonal selection with elitism-guided crossover for function optimization. In: International Conference on Innovative Computing, Information and Control, pp. 206–209 (2006)
Hutter, F., Hoos, H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the Twenty-Second Conference on Artifical Intelligence, pp. 1152–1157 (2007)
Lobo, F.G., Goldberg, D.E.: The parameter-less genetic algorithm in practice. Information Sciences 167(1-4), 217–232 (2004)
Mezura-Montes, E., Palomeque-Ortiz, A.G.: Parameter control in differential evolution for constrained optimization. In: IEEE International Conference on E-Commerce Technology, pp. 1375–1382 (2009)
Montero, E., Riff, M.C., Basterrica, D.: Improving MMAS using parameter control. In: IEEE Congress on Evolutionary Computation, Hong-Kong, June 2008, pp. 4007–4011 (2008)
Montero, E., Riff, M.C.: Self-calibrating strategies for evolutionary approaches that solve constrained combinatorial problems. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 262–267. Springer, Heidelberg (2008)
Montiel, O., Castillo, O., Melin, P., Díaz, A.R., Sepúlveda, R.: Human evolutionary model: A new approach to optimization. Information Sciences 177(10), 2075–2098 (2007)
Moscato, P., Fontanari, J.F.: Stochastic versus deterministic update in simulated annealing. Physics Letters A 146(4), 204–208 (1990)
Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolutionary algorithm parameters. In: Joint International Conference for Artificial Intelligence (IJCAI), pp. 975–980 (2006)
Pelikan, M., Goldberg, D.E., Lobo, F.G.: A Survey of Optimization by Building and Using Probabilistic Models. Computational Optimization and Applications 21(1), 5–20 (2002)
Richter, D., Goldengorinand, B., Jäger, G., Molitor, P.: Improving the efficiency of helsgauns lin-kernighan heuristic for the symmetric tsp. In: Proceedings of the Fourth Workshop on Combinatorial and Algorithmic Aspects of Networking, pp. 99–111 (2007)
Riff, M.C., Bonnaire, X.: Inheriting parents operators: a new dynamic strategy to improve evolutionary algorithms. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 333–341. Springer, Heidelberg (2002)
Smith, J.E., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms. Soft Computing - A Fusion of Foundations, Methodologies and Applications 1(2), 81–87 (1997)
Srinivasa, K.G., Venugopal, K.R., Patnaik, L.M.: A self-adaptive migration model genetic algorithm for data mining applications. Information Sciences 177(20), 4295–4313 (2007)
Stützle, T., Hoos, H.: Max-min ant system and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation, pp. 309–314 (1997)
Stützle, T., Grün, A., Linke, S., Rüttger, M.: A comparison of nature inspired heuristics on the traveling salesman problem. In: Proceedings of the Parallel Problem Solving from Nature (PPSN VI), pp. 661–670. Springer, Heidelberg (2000)
Sun, W.-D., Xu, X.-S., Dai, H.-W., Tang, Z., Tamura, H.: An immune optimization algorithm for tsp problem. In: SICE 2004 Annual Conference, vol. 1, pp. 710–715 (2004)
Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. European Journal of Operational Research 197(2), 701–713 (2009)
Tuson, A., Ross, P.: Adapting operator settings in genetic algorithms. Evolutionary Computation 6(2), 161–184 (1998)
Yang, J., Wu, C., Pueh Lee, H., Liang, Y.: Solving traveling salesman problems using generalized chromosome genetic algorithm. Progress in Natural Science 18(7), 887–892 (2008)
Zhang, W., Looks, M.: A novel local search algorithm for the traveling salesman problem that exploits backbones. In: Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI 2005), pp. 343–350 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Riff, M.C., Montero, E., Neveu, B. (2010). C-Strategy: A Dynamic Adaptive Strategy for the CLONALG Algorithm. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VIII. Lecture Notes in Computer Science, vol 6260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16236-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-16236-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16235-0
Online ISBN: 978-3-642-16236-7
eBook Packages: Computer ScienceComputer Science (R0)