Abstract
We study three different space complexity classes: LINSPACE, PSPACE, and ESPACE and give complete characterisations for these classes. We employ rewrite systems, whose termination can be shown by Knuth Bendix orders. To capture LINSPACE, we consider positively weighted Knuth Bendix orders. To capture PSPACE, we consider unary rewrite systems, compatible with a Knuth Bendix order, where we allow for padding of the input. And to capture ESPACE, we make use of a non-standard generalisation of the Knuth Bendix order.
This research is partly supported by FWF (Austrian Science Fund) project P20133.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avanzini, M., Moser, G.: Complexity Analysis by Rewriting. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 130–146. Springer, Heidelberg (2008)
Avanzini, M., Moser, G.: Dependency pairs and polynomial path orders. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 48–62. Springer, Heidelberg (2009)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. JFP 11(1), 33–53 (2001)
Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-interpretations and small space bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 150–164. Springer, Heidelberg (2005)
Hofbauer, D.: Termination Proofs and Derivation Lengths in Term Rewriting Systems. Ph.D. thesis, Technische Universität Berlin (1992)
Hofbauer, D.: Termination proofs with multiset path orderings imply primitive recursive derivation lengths. TCS 105(1), 129–140 (1992)
Hofbauer, D., Lautemann, C.: Termination Proofs and the Length of Derivation. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg (1989)
Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational problems in abstract algebra. Pergamon, Oxford (1970)
Koprowski, A., Waldmann, J.: Arctic Termination ...Below Zero. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)
Kozen, D.: Theory of Computation. Springer, Heidelberg (2006)
Lepper, I.: Derivation lengths and order types of Knuth-Bendix orders. TCS 269, 433–450 (2001)
Marion, J.Y.: Analysing the Implicit Complexity of Programs. IC 183, 2–18 (2003)
Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 75–89. Springer, Heidelberg (2006)
Moser, G., Schnabl, A.: The Derivational Complexity Induced by the Dependency Pair Method. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 255–260. Springer, Heidelberg (2009)
Moser, G., Schnabl, A., Waldmann, J.: Complexity Analysis of Term Rewriting Based on Matrix and Context Dependent Interpretations. In: Proc. of 28th FSTTICS, pp. 304–315. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)
TeReSe: Term Rewriting Systems, Cambridge Tracks in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)
Weiermann, A.: Termination proofs by lexicographic path orderings yield multiply recursive derivation lengths. Theoretical Computer Science 139(1), 355–362 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonfante, G., Moser, G. (2010). Characterising Space Complexity Classes via Knuth-Bendix Orders. In: Fermüller, C.G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science, vol 6397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16242-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-16242-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16241-1
Online ISBN: 978-3-642-16242-8
eBook Packages: Computer ScienceComputer Science (R0)