Skip to main content

1-vs-Others Rough Decision Forest

  • Conference paper
Rough Set and Knowledge Technology (RSKT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6401))

Included in the following conference series:

  • 988 Accesses

Abstract

Bootstrap, boosting and subspace are popular techniques for inducing decision forests. In all the techniques, each single decision tree is induced in the same way as that for inducing a decision tree on the whole data, in which all possible classes are dealt with together. In such induced trees, some minority classes may be covered up by others when some branches grow or are pruned. For a multi-class problem, this paper proposes to induce individually the 1-vs-others rough decision trees for all classes, and finally construct a rough decision forest, intending to reduce the possible side effects of imbalanced class distribution. Since all training samples are reused to construct the rough decision trees for all classes, the method also tends to have the merits of bootstrap, boosting and subspace. Experimental results and comparisons on some hard gene expression data show the attractiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Technical report. Wadsworth International, Monterey, CA (1984)

    Google Scholar 

  2. Quinlan, J.R.: Introduction of Decision Trees. Machine Learning 3, 81–106 (1986)

    Google Scholar 

  3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  4. Quinlan, J.R., Rivest, R.: Inferring Decision Trees Using the Minimum Description Length Principle. Information and Computation 80, 227–248 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fayyad, U.M., Irani, K.B.: On the Handling of Continuous-valued Attributes in Decision Tree Generation. Machine Learning 8, 87–102 (1992)

    MATH  Google Scholar 

  6. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  8. Dietterich, T.G., Kong, E.B.: Machine Learning Bias, Statistical Bias and Statistical Variance of Decision Tree Algorithms. Technical Report. Oregon State University (1995)

    Google Scholar 

  9. Freund, Y., Schapire, R.E.: A Decision-theoretic Generalization of On-line Learning and an Application to Boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Quinlan, J.R.: Bagging, Boosting, and C4.5. In: Proceedings, Fourteenth National Conference on Artificial Intelligence (1996)

    Google Scholar 

  11. Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 832–844 (1998)

    Article  Google Scholar 

  12. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wei, J.M.: Rough Set Based Approach to Selection of Node. International Journal of Computational Cognition 1, 25–40 (2003)

    Google Scholar 

  14. Wei, J.M., Wang, S.Q., et al.: Rough Set Based Approach for Inducing Decision Trees. Knowledge-Based Systems 20, 695–702 (2007)

    Article  Google Scholar 

  15. Yellasiri, R., Rao, C.R., Reddy, V.: Decision Tree Induction Using Rough Set Theory: Comparative Study. Journal of Theoretical and Applied Information Technology 3, 110–114 (2005)

    Google Scholar 

  16. Minz, S., Jain, R.: Rough Set Based Decision Tree Model for Classification. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 172–181. Springer, Heidelberg (2003)

    Google Scholar 

  17. Minz, S., Jain, R.: Refining Decision Tree Classifiers Using Rough Set Tools. International Journal of Hybrid Intelligent Systems 2, 133–148 (2005)

    MATH  Google Scholar 

  18. Tan, A.C., Naiman, D.Q., Xu, L., Winclow, R.L., Geman, D.: Simple Decision Rules for Classifying Human Cancers from Gene Expression Profiles. Bioinformatics 21, 3896–3904 (2005)

    Article  Google Scholar 

  19. Khan, J., et al.: Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks. Nat. Med. 7, 673–679 (2001)

    Article  Google Scholar 

  20. Ramaswamy, S., et al.: Multiclass Cancer Diagnosis Using Tumor Gene Expression Signatures. Proc. Natl. Acad. Sci. USA 98, 15149–15154 (2001)

    Article  Google Scholar 

  21. Su, A.I., et al.: Molecular Classification of Human Carcinomas by Use of Gene Expression Signatures. Cancer Res. 61, 7388–7393 (2001)

    Google Scholar 

  22. Perou, C.M., et al.: Molecular Portraits of Human Breast Tumours. Nature 406, 747–752 (2000)

    Article  Google Scholar 

  23. Wei, J.M., Wang, G.Y., Kong, X.M., Li, S.J., Wang, S.Q.: A New Method for Discretization of Continuous Attributes Based on VPRS. LNCS, pp. 183–190. Springer, Heidelberg (2006)

    Google Scholar 

  24. Wei, J.M., Wang, S.Q., Yu, G., Gu, L., Wang, G.Y., Yuan, X.J.: A Novel Method for Pruning Decision Trees. In: ICMLC 2009, pp. 339–343 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, J., Wang, S., Wang, G. (2010). 1-vs-Others Rough Decision Forest. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds) Rough Set and Knowledge Technology. RSKT 2010. Lecture Notes in Computer Science(), vol 6401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16248-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16248-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16247-3

  • Online ISBN: 978-3-642-16248-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics