Skip to main content

Incorporating Great Deluge with Kempe Chain Neighbourhood Structure for the Enrolment-Based Course Timetabling Problem

  • Conference paper
Rough Set and Knowledge Technology (RSKT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6401))

Included in the following conference series:

Abstract

In general, course timetabling refers to assignment processes that assign events (courses) to a given rooms and timeslots subject to a list of hard and soft constraints. It is a challenging task for the educational institutions. In this study we employed a great deluge algorithm with kempe chain neighbourhood structure as an improvement algorithm. The Round Robin (RR) algorithm is used to control the selection of neighbourhood structures within the great deluge algorithm. The performance of our approach is tested over eleven benchmark datasets (representing one large, five medium and five small problems). Experimental results show that our approach is able to generate competitive results when compared with previous available approaches. Possible extensions upon this simple approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdullah, S., Shaker, K., McCollum, B., McMullan, P.: Dual sequence simulated annealing with round-robin approach for university course timetabling. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 1–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Abdullah, S., Burke, E.K., McCollum, B.: An investigation of variable neighbourhood search for university course timetabling. In: The 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA), pp. 413–427 (2005)

    Google Scholar 

  3. Abdullah, S., Burke, E.K., McCollum, B.: Using a randomised iterative improvement algorithm with composite neighbourhood structures for university course timetabling. In: Metaheuristics: Progress in complex systems optimization (Operations Research / Computer Science Interfaces Series), ch. 8. Springer, Heidelberg (2007a) ISBN:978-0-387-71919-1

    Google Scholar 

  4. Abdullah, S., Burke, E.K., McCollum, B.: A hybrid evolutionary approach to the university course timetabling problem. In: IEEE Congres on Evolutionary Computation, pp. 1764–1768 (2007b) ISBN: 1-4244-1340-0

    Google Scholar 

  5. Al-Betar, M., Khader, A., Yi Liao, I.: A Harmony Search with Multi-pitch Adjusting Rate for the University Course Timetabling. In: Geem, Z.W. (ed.) Recent Advances in Harmony Search Algorithm. SCI, vol. 270, pp. 147–161. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for timetabling problems. European Journal of Operational Research 176, 177–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burke, E., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighbourhood approaches to university exam timetabling. Technical Report NOTTCS-TR-2006-2, University of Nottingham, School of CSiT (2006)

    Google Scholar 

  8. Landa-Silva, D., Obit, J.H.: Great deluge with non-linear decay rate for solving course timetabling problem. In: The fourth International IEEE conference on Intelligent Systems, Varna, Bulgaria (2008)

    Google Scholar 

  9. Lewis, R., Paechter, B.: New crossover operators for timetabling with evolutionary algorithms. In: Lotfi (ed.) Proceedings of the 5th International Conference on Recent Advances in Soft Computing, UK, December 16-18, pp. 189–194 (2004)

    Google Scholar 

  10. McMullan, P.: An extended implementation of the great deluge algorithm for course timetabling. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 538–545. Springer, Heidelberg (2007)

    Google Scholar 

  11. Socha, K., Knowles, J., Samples, M.: A max-min ant system for the university course timetabling problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)

    Google Scholar 

  12. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A Survey of Search Methodologies and Automated System Development for Examination Timetabling. Journal of Scheduling 12(1), 55–89 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Thompson, J., Dowsland, K.: A robust simulated annealing based examination timetabling system. Computers & Operations Research 25, 637–648 (1998)

    Article  MATH  Google Scholar 

  14. Turabieh, H., Abdullah, S., McCollum, B.: Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 497–504. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdullah, S., Shaker, K., McCollum, B., McMullan, P. (2010). Incorporating Great Deluge with Kempe Chain Neighbourhood Structure for the Enrolment-Based Course Timetabling Problem. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds) Rough Set and Knowledge Technology. RSKT 2010. Lecture Notes in Computer Science(), vol 6401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16248-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16248-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16247-3

  • Online ISBN: 978-3-642-16248-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics