Abstract
In general, course timetabling refers to assignment processes that assign events (courses) to a given rooms and timeslots subject to a list of hard and soft constraints. It is a challenging task for the educational institutions. In this study we employed a great deluge algorithm with kempe chain neighbourhood structure as an improvement algorithm. The Round Robin (RR) algorithm is used to control the selection of neighbourhood structures within the great deluge algorithm. The performance of our approach is tested over eleven benchmark datasets (representing one large, five medium and five small problems). Experimental results show that our approach is able to generate competitive results when compared with previous available approaches. Possible extensions upon this simple approach are also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdullah, S., Shaker, K., McCollum, B., McMullan, P.: Dual sequence simulated annealing with round-robin approach for university course timetabling. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 1–10. Springer, Heidelberg (2010)
Abdullah, S., Burke, E.K., McCollum, B.: An investigation of variable neighbourhood search for university course timetabling. In: The 2nd Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA), pp. 413–427 (2005)
Abdullah, S., Burke, E.K., McCollum, B.: Using a randomised iterative improvement algorithm with composite neighbourhood structures for university course timetabling. In: Metaheuristics: Progress in complex systems optimization (Operations Research / Computer Science Interfaces Series), ch. 8. Springer, Heidelberg (2007a) ISBN:978-0-387-71919-1
Abdullah, S., Burke, E.K., McCollum, B.: A hybrid evolutionary approach to the university course timetabling problem. In: IEEE Congres on Evolutionary Computation, pp. 1764–1768 (2007b) ISBN: 1-4244-1340-0
Al-Betar, M., Khader, A., Yi Liao, I.: A Harmony Search with Multi-pitch Adjusting Rate for the University Course Timetabling. In: Geem, Z.W. (ed.) Recent Advances in Harmony Search Algorithm. SCI, vol. 270, pp. 147–161. Springer, Heidelberg (2010)
Burke, E.K., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for timetabling problems. European Journal of Operational Research 176, 177–192 (2007)
Burke, E., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Hybrid variable neighbourhood approaches to university exam timetabling. Technical Report NOTTCS-TR-2006-2, University of Nottingham, School of CSiT (2006)
Landa-Silva, D., Obit, J.H.: Great deluge with non-linear decay rate for solving course timetabling problem. In: The fourth International IEEE conference on Intelligent Systems, Varna, Bulgaria (2008)
Lewis, R., Paechter, B.: New crossover operators for timetabling with evolutionary algorithms. In: Lotfi (ed.) Proceedings of the 5th International Conference on Recent Advances in Soft Computing, UK, December 16-18, pp. 189–194 (2004)
McMullan, P.: An extended implementation of the great deluge algorithm for course timetabling. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 538–545. Springer, Heidelberg (2007)
Socha, K., Knowles, J., Samples, M.: A max-min ant system for the university course timetabling problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)
Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A Survey of Search Methodologies and Automated System Development for Examination Timetabling. Journal of Scheduling 12(1), 55–89 (2009)
Thompson, J., Dowsland, K.: A robust simulated annealing based examination timetabling system. Computers & Operations Research 25, 637–648 (1998)
Turabieh, H., Abdullah, S., McCollum, B.: Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 497–504. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abdullah, S., Shaker, K., McCollum, B., McMullan, P. (2010). Incorporating Great Deluge with Kempe Chain Neighbourhood Structure for the Enrolment-Based Course Timetabling Problem. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds) Rough Set and Knowledge Technology. RSKT 2010. Lecture Notes in Computer Science(), vol 6401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16248-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-16248-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16247-3
Online ISBN: 978-3-642-16248-0
eBook Packages: Computer ScienceComputer Science (R0)