Skip to main content

A Dynamical Systems Approach to Musical Tonality

  • Chapter
Nonlinear Dynamics in Human Behavior

Part of the book series: Studies in Computational Intelligence ((SCI,volume 328))

  • 1403 Accesses

Abstract

Music is a form of communication that relies on highly structured temporal sequences comparable in complexity to language. Music is found among all human cultures, and musical languages vary across cultures with learning. Tonality – a set of stability and attraction relationships perceived among musical frequencies – is a universal feature of music, found in virtually every musical culture. In this chapter, a new theory of central auditory processing and development is proposed, and its implications for tonal cognition and perception are explored. A simple model is put forward, based on knowledge of auditory organization and general neurodynamic principles. The model is simplified as compared to the organization and dynamics of the real auditory system, nevertheless it makes realistic predictions about neurodynamics. The analysis predicts the existence of natural resonances, the potential for tonal language learning, the perceptual categorization of intervals, and most importantly, relative stability and attraction relationships among musical tones. This approach suggests that high-level music cognition and perception may arise from the interaction of acoustic signals with the dynamics of the auditory system. Musical universals are predicted by intrinsic neurodynamics that provide a direct link to neurophysiology, and Hebbian synaptic modification could explain how different tonal languages are established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bailek, W.: Physical limits to sensation and perception. Annual Review of Biophysics and Biophysical Chemistry 16, 455–478 (1987)

    Article  Google Scholar 

  • Bharucha, J.J.: Anchoring effects in music: The resolution of dissonance. Cognitive Psychology 16, 485–518 (1984)

    Article  Google Scholar 

  • Bharucha, J.J., Stoeckig, K.: Reaction-Time and Musical Expectancy - Priming of Chords. Journal of Experimental Psychology-Human Perception and Performance 12, 403–410 (1986)

    Article  Google Scholar 

  • Burns, E.M.: Intervals, scales, and tuning. In: Deustch, D. (ed.) The Psychology of Music, pp. 215–264. Academic Press, San Diego (1999)

    Chapter  Google Scholar 

  • Burns, E.M., Campbell, S.L.: Frequency and frequency ratio resolution by possessors of relative and absolute pitch: Examples of categorical perception? Journal of the Acoustical Society of America 96, 2704–2719 (1994)

    Article  Google Scholar 

  • Camalet, S., Duke, T., Julicher, F., Prost, J.: Auditory sensitivity provided by self tuned critical oscillations of hair cells. Proceedings of the National Academy of Sciences 97, 3183–3188 (1999)

    Article  Google Scholar 

  • Cartwright, J.H.E., Gonzalez, D.L., Piro, O.: Nonlinear Dynamics of the Perceived Pitch of Complex Sounds. Physical Review Letters 82, 5389–5392 (1999)

    Article  Google Scholar 

  • Choe, Y., Magnasco, M.O., Hudspeth, A.J.: A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Proceedings of the National Academy of Sciences 95, 15321–15336 (1998)

    Article  Google Scholar 

  • Cuddy, L.L., Lunney, C.A.: Expectancies generated by melodic intervals: Perceptual judgements of melodic continuity. Perception & Psychophysics 57, 451–462 (1995)

    Google Scholar 

  • Dowling, W.J.: Scale and contour: Two components of a theory of memory for melodies. Psychological Review 85, 341–354 (1978)

    Article  Google Scholar 

  • Dowling, W.J., Fujitani, D.S.: Contour, interval and pitch recognition in memory for melodies. Journal of the Acoustical Society of America 49, 524–531 (1971)

    Article  Google Scholar 

  • Drover, J.D., Ermentrout, B.: Nonlinear coupling near a degenerate Hopf (Bautin) Bifurcation. SIAM Journal On Applied Mathematics 63, 1627–1647 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Eerola, T., Toiviainen, P.: Finnish Folksong Database (2004), http://www.jyu.fi/hum/laitokest/musiikki/en/research/coe/materials/collectiondownload (Retrieved October 13, 2010)

  • Grothe, B.: New roles for synaptic inhibition in sound localization. Nature Reviews Neuroscience 4, 540–550 (2003)

    Article  Google Scholar 

  • Grothe, B., Klump, G.M.: Temporal processing in sensory systems. Current Opinion in Neurobiology 10, 467–473 (2000)

    Article  Google Scholar 

  • Guckenheimer, J., Kuznetsov, Y.A.: Bautin bifurcation. Scholarpedia 2, 1853 (2007)

    Article  Google Scholar 

  • Helmholtz, H.L.F.: On the sensations of tone as a physiological basis for the theory of music. Dover Publications, New York (1863)

    Google Scholar 

  • Hoppensteadt, F.C., Izhikevich, E.M.: Synaptic organizations and dynamical properties of weakly connected neural oscillators I: Analysis of a canonical model. Biological Cybernetics 75, 117–127 (1996a)

    Article  MATH  Google Scholar 

  • Hoppensteadt, F.C., Izhikevich, E.M.: Synaptic organizations and dynamical properties of weakly connected neural oscillators II: Learning phase information. Biological Cybernetics 75, 126–135 (1996b)

    Google Scholar 

  • Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Springer, Heidelberg (1997)

    Google Scholar 

  • Kameoka, A., Kuriyagawa, M.: Consonance theory part II: Consonance of complex tones and its calculation method. Journal of the Acoustical Society of America 45, 1460–1471 (1969)

    Article  Google Scholar 

  • Kemp, D.T.: Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. European Archives of Oto-Rhino-Laryngology 224, 370 (1979)

    Google Scholar 

  • Kern, A., Stoop, R.: Essential role of couplings between hearing nonlinearities. Physical Review Letters 91, 128101–128104 (2003)

    Article  Google Scholar 

  • Knopoff, L., Hutchinson, W.: Entropy as a measure of style: The influence off sample length. Journal of Music Theory 27, 75–97 (1983)

    Article  Google Scholar 

  • Krumhansl, C.L.: Cognitive foundations of musical pitch. Oxford University Press, NY (1990)

    Google Scholar 

  • Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review 89(4), 334–368 (1982)

    Article  Google Scholar 

  • Langner, G.: Periodicity coding in the auditory system. Hearing Research 60, 115–142 (1992)

    Article  Google Scholar 

  • Langner, G.: Temporal processing of periodic signals in the auditory system: Neuronal representation of pitch, timbre, and harmonicity. Z Audiol. 46, 21–80 (2007)

    Google Scholar 

  • Large, E.W., Almonte, F., Velasco, M.: A canonical model for gradient frequency neural networks. Physica D: Nonlinear Phenomena 239(12), 905–911 (2010)

    Article  MATH  Google Scholar 

  • Large, E.W., Crawford, J.D.: Auditory temporal computation: Interval selectivity based on post-inhibitory rebound. Journal of Computational Neuroscience 13, 125–142 (2002)

    Article  Google Scholar 

  • Larson, S.: Musical Forces and Melodic Expectations: Comparing Computer Models and Experimental Results. Music Perception 21, 457–498 (2004a)

    Article  Google Scholar 

  • Larson, S.: Musical forces and melodic expectations: Comparing computer models and experimental results. Music Perception 21, 457–498 (2004b)

    Article  Google Scholar 

  • Lerdahl, F.: Tonal Pitch Space. Oxford University Press, New York (2001)

    Google Scholar 

  • Loosen, F.: Intonation of solo violin performance with reference to equally temepred, Pythagorean and just intonations. Journal of the Acoustical Society of America 93, 25–539 (1993)

    Article  Google Scholar 

  • Massaro, D.W., Kallman, H.J., Kelly, J.L.: The role of tone height, melodic contour, and tone chroma in melody recognition. Journal of Experimental Psychology: Human Learning and Memory 6, 77–90 (1980)

    Article  Google Scholar 

  • Plomp, R., Levelt, W.J.M.: Tonal consonance and critical bandwidth. Jounal of the Acoustical Society of America 38, 548–560 (1965)

    Article  Google Scholar 

  • Prince, A., Smolensky, P.: Optimality: From Neural Networks to Universal Grammar. Science 275, 1604–1610 (1997)

    Article  MathSciNet  Google Scholar 

  • Ruggero, M.A.: Responses to sound of the basilar membrane of the mamalian cochlea. Current Opinion in Neurobiology 2, 449–456 (1992)

    Article  Google Scholar 

  • Smith, J.D., Nelson, D.G., Grohskopf, L.A., Appleton, T.: What child is this? What interval was that? Familiar tunes and music perception in novice listeners. Cognition 52, 23–54 (1994)

    Article  Google Scholar 

  • Tillmann, B., Bharucha, J.J., Bigand, E.: Implicit learning of tonality: A self-organizing approach. Psychological Review 107, 885–913 (2000)

    Article  Google Scholar 

  • Trehub, S.E., Morrongiello, B.A., Thorpoe, L.A.: Children’s perception of familiar melodies: The role of interval contour and key. Psychomusicolgy 5, 39–48 (1985)

    Google Scholar 

  • von Bekesy, G.: Experiments in Hearing. McGraw-Hill Book Co., New York (1960)

    Google Scholar 

  • Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    MATH  Google Scholar 

  • Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Article  Google Scholar 

  • Wright, A.A., Rivera, J.J., Hulse, S.H., Shyan, M., Neiworth, J.J.: Music perception and octae generalization in Rhesus monkeys. Journal of Experimental Psychology: General 129, 291–307 (2000)

    Article  Google Scholar 

  • Zuckerkandl, V.: Sound and Symbol: Music and the External World (WR Trask, Trans.). Princeton University Press, Princeton (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Large, E.W. (2010). A Dynamical Systems Approach to Musical Tonality. In: Huys, R., Jirsa, V.K. (eds) Nonlinear Dynamics in Human Behavior. Studies in Computational Intelligence, vol 328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16262-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16262-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16261-9

  • Online ISBN: 978-3-642-16262-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics