Skip to main content

On Model Checking Techniques for Randomized Distributed Systems

  • Conference paper
Integrated Formal Methods (IFM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6396))

Included in the following conference series:

Abstract

The automata-based model checking approach for randomized distributed systems relies on an operational interleaving semantics of the system by means of a Markov decision process and a formalization of the desired event E by an ω-regular linear-time property, e.g., an LTL formula. The task is then to compute the greatest lower bound for the probability for E that can be guaranteed even in worst-case scenarios. Such bounds can be computed by a combination of polynomially time-bounded graph algorithm with methods for solving linear programs. In the classical approach, the “worst-case” is determined when ranging over all schedulers that decide which action to perform next. In particular, all possible interleavings and resolutions of other nondeterministic choices in the system model are taken into account. The worst-case analysis relying on this general notion of schedulers is often too pessimistic and leads to extreme probability values that can be achieved only by schedulers that are unrealistic for parallel systems. This motivates the switch to more realistic classes of schedulers that respect the fact that the individual processes only have partial information about the global system states. Such classes of partial-information schedulers yield more realistic worst-case probabilities, but computationally they are much harder. A wide range of verification problems turns out to be undecidable when the goal is to check that certain probability bounds hold under all partial-information schedulers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andres, M., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding in probabilistic concurrent systems. In: Proc. of the 7th International Conference on Quantitative Evaluation of SysTems (QEST 2010). IEEE Computer Society Press, Los Alamitos (to appear 2010)

    Google Scholar 

  2. Baier, C., Bertrand, N., Grösser, M.: On decision problems for probabilistic Büchi automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Baier, C., Grösser, M.: Recognizing ω-regular languages with probabilistic automata. In: Proc. of the 20th IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 137–146. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  4. Baier, C., Grösser, M., Ciesinski, F.: Partial order reduction for probabilistic systems. In: Proc. of the First International Conference on Quantitative Evaluation of SysTems (QEST), pp. 230–239. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  5. Baier, C., Größer, M., Ciesinski, F.: Model checking linear time properties of probabilistic systems. In: Handbook of Weighted Automata, pp. 519–570 (2009)

    Google Scholar 

  6. Baier, C., Größer, M., Ciesinski, F.: Quantitative analysis under fairness constraints. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 135–150. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic with fairness. Distributed Computing 11 (1998)

    Google Scholar 

  8. Bianco, A., de Alfaro, L.: Model checking of probabilistic and non-deterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  9. Cassandra, A.R.: A survey of POMDP applications. Presented at the AAAI Fall Symposium (1998), http://pomdp.org/pomdp/papers/applications.pdf

  10. Chadha, R., Sistla, P., Viswanathan, M.: Power of randomization in automata on infinite strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 229–243. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Chatterjee, K., Doyen, L., Henzinger, T.: Qualitative analysis of partially-observable markov decision processes. In: Proc. Mathematical Foundation of Computer Science. LNCS, Springer, Heidelberg (2010)

    Google Scholar 

  12. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched PIOA: Parallel composition via distributed scheduling. Theoretical Computer Science 365(1-2), 83–108 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic programs. In: Proc. of the First International Conference on Quantitative Evaluation of SysTems (QEST), pp. 240–249. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  15. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, Department of Computer Science (1997)

    Google Scholar 

  16. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-information policies is hard. In: Proc. of the 2nd International Workshop on Probabilistic Methods in Verification (ProbMiV 1999), pp. 19–32. Birmingham University (1999), Research Report CSR-99-9

    Google Scholar 

  17. Giro, S., D’Argenio, P., María Ferrer Fioriti, L.: Partial order reduction for probabilistic systems: A revision for distributed schedulers. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  20. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. International Journal on Software Tools for Technology Transfer (STTT) 6(2), 128–142 (2004)

    Article  MATH  Google Scholar 

  21. Littman, M.: Algorithms for Sequential Decision Making. PhD thesis, Brown University, Department of Computer Science (1996)

    Google Scholar 

  22. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and related stochastic optimization problems. Artificial Intelligence 147(1-2), 5–34 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Monahan, G.: A survey of partially observable Markov decision processes: Theory, models and algorithms. Management Science 28(1), 1–16 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mundhenk, M., Goldsmith, J., Lusena, C., Allender, E.: Complexity of finite-horizon Markov decision process problems. Journal of the ACM 47(4), 681–720 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Papadimitriou, C., Tsitsiklis, J.: The complexity of Markov decision processes. Mathematics of Operations Research 12(3) (1987)

    Google Scholar 

  26. Paz, A.: Introduction to probabilistic automata. Academic Press Inc., London (1971)

    MATH  Google Scholar 

  27. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley and Sons, Chichester (1994)

    Book  MATH  Google Scholar 

  28. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer System Sciences 29(2), 274–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  31. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York (1997)

    Chapter  Google Scholar 

  32. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proc. of the 26th Symposium on Foundations of Computer Science (FOCS), pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

  33. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. of the 1st IEEE Symposium on Logic in Computer Science (LICS), pp. 332–345. IEEE Computer Society Press, Los Alamitos (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baier, C. (2010). On Model Checking Techniques for Randomized Distributed Systems. In: Méry, D., Merz, S. (eds) Integrated Formal Methods. IFM 2010. Lecture Notes in Computer Science, vol 6396. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16265-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16265-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16264-0

  • Online ISBN: 978-3-642-16265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics