Abstract
In this paper we address the problem of deciding may- and must-equivalence and termination of nondeterministic finite programs from second-order recursion-free Erratic Idealized Algol. We use game semantics to compositionally extract finite models of programs, and the CSP process algebra as a concrete formalism for representation of models and their efficient verification. Observational may- and must-equivalence and liveness properties, such as divergence and termination, are decided by checking traces refinements and divergence-freedom of CSP processes using the FDR tool. The practicality of the approach is evaluated on several examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent, R.D. (eds.) Algol-like languages. Birkhaüser, Basel (1997)
Bakewell, A., Ghica, D.R.: On-the-fly techniques for game-based software model checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 78–92. Springer, Heidelberg (2008)
Colon, M.A., Sipma, H.B.: Practical Methods for Proving Program Termination. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454. Springer, Heidelberg (2002)
Colon, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg (2001)
Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer, Heidelberg (2005)
Dimovski, A., Lazić, R.: CSP Representation of Game Semantics for Second-order Idealized Algol. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 146–161. Springer, Heidelberg (2004)
Dimovski, A., Ghica, D.R., Lazić, R.: Data-Abstraction Refinement: A Game Semantic Approach. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 102–117. Springer, Heidelberg (2005)
Dimovski, A., Ghica, D.R., Lazić, R.: A Counterexample-Guided Refinement Tool for Open Procedural Programs. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 288–292. Springer, Heidelberg (2006)
Dimovski, A., Lazić, R.: Compositional Software Verification Based on Game Semantics and Process Algebras. Int. Journal on STTT 9(1), 37–51 (2007)
Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 211–225. Springer, Heidelberg (2004)
Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeterminism. In: Proceedings of LICS, pp. 422–430. IEEE, Los Alamitos (1999)
Harmer, R.: Games and Full Abstraction for Nondeterministic Languages. Ph. D. Thesis Imperial College (1999)
Legay, A., Murawski, A., Ouaknine, J., Worrell, J.: On Automated Verification of Probabilistic Programs. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 173–187. Springer, Heidelberg (2008)
Murawski, A.: Reachability Games and Game Semantics: Comparing Nondeterministic Programs. In: Proceedings of LICS, pp. 173–183. IEEE, Los Alamitos (2008)
Roscoe, W.A.: Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dimovski, A. (2010). A Compositional Method for Deciding Equivalence and Termination of Nondeterministic Programs. In: Méry, D., Merz, S. (eds) Integrated Formal Methods. IFM 2010. Lecture Notes in Computer Science, vol 6396. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16265-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-16265-7_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16264-0
Online ISBN: 978-3-642-16265-7
eBook Packages: Computer ScienceComputer Science (R0)