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Abstract. Though program verification is known and has been used
for decades, the verification of a complete computer system still remains
a grand challenge. Part of this challenge is the interaction of applica-
tion programs with the operating system, which is usually entrusted
with retrieving input data from and transferring output data to periph-
eral devices. In this scenario, the correct operation of the applications
inherently relies on operating-system correctness. Based on the formal
correctness of our real-time operating system Olos, this paper describes
an approach to pervasively verify applications running on top of the op-
erating system.

1 Introduction

Various electronic devices are embedded in the modern car, and some are even
in charge of safety-critical tasks like accelerator control. In the past years, a
failing accelerator control has caused several fatal accidents [1]. Though the
manufacturer has attributed these failures to a blocked gas pedal, a software
problem has recently been suspected for the sudden, unintended acceleration of
a car from the same manufacturer while driven by cruise control [2]. The mere
rumor of such a software flaw is economically troublesome, not to mention the
tragedy of possibly resulting fatal accidents.

There are different approaches to increase the reliability of software. A rigor-
ous way to prevent flaws is the exclusion of systematic errors by verification. If
the proofs are checked by a computer, we speak of formal verification. Certainly,
this method should not be limited to a single system layer but span as many lay-
ers as possible. Pervasive verification means that the system layers are coupled
by formal soundness and simulation theorems, such that any verification result,
obtained on a suitable layer, can ultimately be transferred down to a correct-
ness theorem on the lowest level. While program verification has been known
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and used over decades, the pervasive formal verification of complete computer
systems still remains a grand challenge [3].

Among others [4], the Verisoft project takes on this challenge. The goal of
its automotive subproject is a pervasively verified distributed real-time system,
consisting of hardware, a real-time operating system, and application programs.
We have implemented the operating system Olos on a verified processor [5]
using a generic programming framework for operating systems [6]. Moreover, we
have proven the correctness of Olos [7] in the proof assistant Isabelle/HOL [8].

In this paper, we report on the formally proven foundation of a verification
approach for applications running on top of Olos. We present the necessary
theorems to transfer verification results down to the operating-system level and
thus, establish a formal link between the proofs on the application layer and
those on the operating-system layer. More specifically, our verification approach
is an extension of an existing language stack [9] based upon a verified C compiler
[10] and a generic verification framework for sequential imperative programs [11].

Our overall proof architecture is depicted in Fig. 1: The original language
stack (see Sect. 2.3) is shown on the left column. On the lower end, we have the
sequential assembly language (seqasm), above is the C variant C0. Leinenbach &
Petrova’s [10] correct compiler translates a sequential C0 program (seqC0) to
assembly. Schirmer [11] has developed the generic Simpl language together with
Hoare logics and a transfer theorem stating that properties proven for Simpl
actually hold in C0. The sequential semantics, however, have no means for com-
munication. Thus, we extend seqC0 and seqasm in Sect. 3 to application processes
(marked by proc in the 2nd column), where the communication withOlos is mod-
eled by explicit inputs and outputs. We do not extend Simpl because it is solely
used for reasoning in Hoare logic, which does not support inputs and outputs.
Instead, we further extend the language stack in Sect. 4 to cooperative concur-
rent applications (marked by cc in the 3rd column). By cooperative concurrency,
we refer to the sequential execution of an application with calls to the operating
system until a final call of a synchronization primitive. Finally, we embed the
lowest layer of this stack into a true concurrent model (tcOlos) of our operating
system with an interleaved execution of applications (last column, Sect. 5).

In Sect. 6, we provide an application example demonstrating how our ap-
proach may be used in practice. We conclude in Sect. 7.



Notation. The formalizations presented in this article are mechanized and
checked within the interactive theorem prover Isabelle/HOL [8]. This paper is
written using Isabelle’s document generation facilities, which guarantees that the
presented theorems correspond to formally proven ones.3 We distinguish formal
entities typographically from other text. We use a sans-serif font for types and
constants (including functions and predicates), e. g., map, a slanted serif font for
free variables, e. g., x, and a slanted sans-serif font for bound variables, e. g., x .
Small capitals are used for data-type constructors, e. g., ExFinish. Type vari-
ables have a leading tick, e. g., ′a. Keywords are typeset in bold font, e. g., let.

The logical and mathematical notation mostly follows standard conventions;
we only present the more unconventional parts here. We prefer curried function
application, e. g., f a b instead of f (a, b). We write f n for the n-fold composition
of function f .

Isabelle/HOL provides a library of standard types like Booleans, natural
numbers, integers, total functions, pairs, lists, and sets as well as packages to
define new data types and records. Isabelle allows polymorphic types, e. g., ′a list

is the list type with type variable ′a. In HOL all functions are total, e. g., nat ⇒
nat is a total function on natural numbers. There is, however, a type ′a option to
formalize partial functions. It is a data type with two constructors, one to inject
values of the base type, e. g., ⌊x⌋, and the additional element ⊥. A base value
can be projected by ⌈x⌉, which is defined by the sole equation ⌈⌊x⌋⌉ = x. As
HOL is a total logic, the term ⌈⊥⌉ is still a valid yet unspecified value. Partial
functions can be represented by the type ′a ⇒ ′b option.

2 Background

2.1 On A Simple Real-Time Operating System

The continually increasing number and variety of electronic components in cars
result in an even faster growing demand for communication channels. Over time,
adding more and more wires has led to space, complexity and maintenance prob-
lems. Alternatively, several components can share the same wire and use a com-
munication protocol on this bus. For that purpose, Kopetz and Grünsteidl [12]
have developed the time-triggered protocol, which schedules fixed transmission
times for each component on the bus. Variations of this protocol are nowadays
widely accepted in industry.

We adopt this idea and assume a distributed system comprising a number of
components that are connected via a communication bus. The components are
called electronic control units (ECUs). Each ECU consists of a general-purpose
RISC processor and an automotive bus controller (ABC). The latter takes care
of the timely transmission and reception of messages. This device is responsible
for clock synchronization, decoupling the processor from the communication bus.

On each processor there runs an instance of the operating system Olos, pro-
viding a virtual processor abstraction to the applications that share the same

3 For the theory files, see http://www.verisoft.de/VerisoftRepository.html
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Fig. 2. The transition phases in each slot of our time-triggered computer system

physical processor. Olos features its own message buffers (MB) for the com-
munication between applications (on the same as well as on different physical
processors). The schedule of the transmission times on the bus is statically fixed
and repeated perpetually. A period, or round, is subdivided into equal time slices,
the so-called slots.

Each slot is divided into four transition phases. Fig. 2 illustrates the data
flow between the ECU components in the different phases:

Transmission In this phase, the ABC device of one ECU transmits a message
to the communication bus. According to a predefined schedule, exactly one
ECU has the send permission in each slot. All ECUs listen on the bus to
receive the transmitted message.

Receive The operating system reads the receive buffer from the ABC device
into one of its own message buffers.

Compute A statically fixed table specifies, which application is executed dur-
ing this phase of the current slot. The application may compute locally or
exchange messages with Olos. When the application has finished its com-
putation for the current slot, it informs the operating system by a special
system call ExFinish.

Send If the ECU is permitted to send, the operating system writes the corre-
sponding message into the ABC’s send buffer.

2.2 Formally Specifying OLOS – the True Concurrent ECU Model

Correctness is usually defined as the compliance with a specification. In our
case, this specification is an automaton. Note that Olos relies on a specific pro-
tocol with the ABC. Hence, the abstract automaton describes the behavior of
the whole ECU consisting of the processor with its running operating system
and applications together with the ABC device. A state s of this ECU automa-
ton comprises the application states s.AM, the message buffers s.MB, an ABC
state (s.abc dev), and an idle flag (s.idle flag). The latter determines whether
the application scheduled in the current slot has finished its computation.



The transitions of the abstract ECU automaton concisely specify our infor-
mal description of the ECU behavior as depicted in Fig. 2. In Isabelle/HOL, we
have formalized the transitions by the function δECU t i. The static schedule t

determines for each slot, which message buffer should be sent, and which appli-
cation should be scheduled. The input i distinguishes external device steps (i =
⌊e⌋) from processor computation (i = ⊥).

In this paper, we are primarily interested in the compute phase. The begin-
ning of the compute phase is marked by the ECU turning into the computing
state. The name is derived from the fact that all transitions starting in this state
involve a computation of the application scheduled in this slot. In this state, the
idle flag as well as the ABC’s interrupt flag are unset. Several transitions are
possible from this state:

– An external device input might raise the interrupt line of the ABC device.
In this case, the currently scheduled application has exceeded its execution
time. Olos reacts exactly as if it had been waiting for the interrupt.

– If the application issues an ExFinish call, the operating system acknowl-
edges the call and waits for an interrupt. Formally, the ECU transition raises
the idle flag. It thereby turns into an idle state waiting for an input ⌊e⌋.

– Otherwise, the ECU simply remains in the computing state.

2.3 On a Correct Compiler – the Sequential Language Stack

ANSI C [13] has a complex and highly underspecified semantics. Low-level func-
tionality like the communication with the operating system, however, inherently
relies on properties of a particular compiler and a specific target hardware, e. g.,
register bindings or the internal representation of data types. They can therefore
not be verified based only on the vague ANSI C semantics. Hence, Leinenbach
and Petrova [10] specified the C-like imperative language C0, which has sufficient
features to implement low-level software but is interpreted by a more specific se-
mantics. Due to lack of space, we omit the details of the language and only
glance at its formal semantics.

The C0 Small-Step Semantics. A C0 program is statically defined by a type-
name table tt, a function table ft, and a symbol table gst of global variables.

In contrast to this static program definition, the program state evolves during
the execution of a C0 program. A state sC0 comprises: (a) the statement sC0.prog
of the program that remains to be executed, and (b) the current state sC0.mem

of the program variables and the heap objects. The transition relation δC0 of the
C0 semantics is deterministic, i. e., a partial function.

The Target Language. Leinenbach & Petrova’s verified C0 compiler translates
C0 programs into the assembly language developed for the Vamp architecture
[5]. Vamp assembly abstracts from the paging mechanism of the processor and
employs a linear memory model. An assembly state sasm is a record compris-



ing two program counters4 (sasm.pcp and sasm.dpc), general-purpose as well as
special-purpose register files (sasm.gprs and sasm.sprs), and memory (sasm.mm).

Assembly transitions are modeled by function δasm. Again, we omit the details
of the semantics because of space restrictions. Note that the effects of hardware
exceptions like accessing unavailable memory cannot be fully determined from
an assembly-machine state. In this case, δasm gets stuck. With sufficient memory,
however, there are no exceptions generated when a well-formed C0 program is
compiled and executed.

On a Correct Compiler. Compiler correctness is formulated as a simulation
theorem. The simulation relation consistent holds for corresponding C0 and as-
sembly states. In essence, the compiler-simulation theorem states that every step
i of the source program executed on the C0 semantics simulates a certain number
si of steps of the Vamp assembly machine executing the compiled code.

The memory requirements can directly be checked on the C0 semantics. We
assume that memory is available from 0 to an address x ≤ 232. The predicate
sufficient memory x tt ft sC0 holds iff x is large enough such that the C0 state
sC0 of the program (tt, ft) can be encoded in assembly. Furthermore, we denote
the successful (i. e., fault-free) execution from an assembly state sasm in t steps
to state s ′asm by (crange, arange)⊢asm sasm →t s ′asm, where instructions are only
read from range crange and only memory addresses in range arange are accessed.
We can compute the ranges for a given C0 program by the functions code range

and address range, respectively.

Theorem 1 (Stepwise Compiler Simulation). We assume:
– The C0 state sC0 is well-formed, i. e., is validC0 tt ft sC0.
– The program counters of the well-formed assembly state sasm do not start in

a delay slot,5 i. e., is validasm sasm and sasm.pcp = sasm.dpc + 4.
– The simulation relation holds for sC0 and sasm under an allocation function

alloc, i. e., consistent tt ft sC0 alloc sasm.
– The C0 transition from sC0 is defined to s ′C0, i. e., δC0 tt ft sC0 = ⌊s ′C0⌋.
– there is sufficient memory before and after the transition, i. e., x ≤ 232,

sufficient memory x tt ft sC0 and sufficient memory x tt ft s ′C0.
Under these assumptions, there exists a step number n, an allocation function
alloc ′, and an assembly state s ′

asm such that (a) the assembly machine success-
fully advances in n steps from sasm to s ′

asm, (b) the final C0 state s ′C0 simulates
s ′

asm under the allocation function alloc ′, and (c) no special-purpose registers
have been changed. Formally:

∃n alloc ′ s ′
asm.

(code range tt (gm st sC0.mem) ft, address range x)⊢asm sasm →n s ′
asm ∧

consistent tt ft s ′C0 alloc ′ s ′
asm ∧ s ′

asm.sprs = sasm.sprs

4 We need two program counters because branches are delayed by one instruction.
5 When a C0 statement has been completely executed, the assembly machine should
certainly not be about to execute a previously seen branch.



Verifying C Programs – the Isabelle/Simpl Framework. The verifica-
tion environment Isabelle/Simpl [11] is implemented as a conservative extension
of the higher-order logic (HOL) instance of the theorem-proving environment
Isabelle [8]. Though the verification environment was motivated by C0, it is by
no means restricted to C0. In fact, it is a self-contained theory development for
a quite generic model of a sequential imperative programming language called
Simpl. Part of this extensive framework are big- and small-step semantics as well
as Hoare logics for both, partial and total correctness. In order to facilitate the
usage of the Hoare logics within Isabelle/HOL, the application of the rules is
automated as a verification-condition generator. Furthermore, proofs have been
developed that the logics are sound and complete with respect to the operational
semantics. Soundness is crucial for pervasive verification in order to formally link
the results from the Hoare logics to the operational Simpl semantics. Correct-
ness theorems about the embedding of C0 into Simpl then allow us to map these
results to the small-step semantics of C0 [11,14]. Completeness can be viewed
as a sophisticated sanity check for the Hoare logics, ensuring that verification
cannot get stuck because of missing Hoare rules.

3 Application Processes

As their most basic feature, operating systems provide a processor abstraction to
applications with (a) an exclusive access to resources like registers and memory
and (b) means for the communication with the operating system to request
further services. This abstraction is commonly referred to as a process. As even
most high-level programs are eventually compiled to run as a process, we consider
any program semantics with primitives for the communication with an operating
system as a process. In this section, we formally specify processes as automata
with outputs and inputs, present two particular process semantics for C0 and
Vamp assembly, and finally extend compiler correctness to processes.

3.1 Process Semantics

In general, we define:

Definition 1 (Process Semantics). A process semantics is an automaton
Aproc specified by a tuple (Sproc, is validproc, is initproc, Σvproc, Ωproc, δproc, ωproc)
with a state space Sproc, a validity predicate is validproc, an initialization predicate
is initproc, an input alphabet Σvproc, an output alphabet Ωproc, a transition function
δproc, as well as an output function ωproc.

The state space Sproc depends on the underlying programming language – in
our case, C0 or Vamp assembly. The communication interface, on the contrary,
is determined by the operating system such that all Olos processes possess the
same in- and output alphabets. Table 1 presents both alphabets side by side.
Note the strong correlation of outputs and inputs: When a process state features
an output seen on the left, Olos responds with one of the inputs shown in the



Table 1. Interface between Olos and its application processes

Outputs Ωproc Inputs Σvproc

εΩ (no call to a primitive) εΣv (internal step)

SendMsg msgval msgnr SendSuccess

InvalidMsgNr

RecvMsg msgnr RecvSuccess msgval

InvalidMsgNr

ExFinish FinishSuccess

InvPtrErr InvPtrResponse

RepeatErr —

ContinueErr Continue

same table row on the right. Formally, we collect the matching output-input
pairs (ω, i) in the set olos responses.

The predicate is initproc mainly determines the set of initial states; it takes two
parameters that constrain the initial memory of processes (effectively, specifying
different subsets of initial states). We implicitly assume that the parameters fulfill
basic validity constraints, which are formalized in the predicate valid params.
The predicate is validproc formulates an invariant over the execution traces of
processes.

Definition 2 (Validity of Process Semantics). We call a process semantics
valid, iff the invariant is validproc holds for all initial states, i. e.,

[[valid params img pages; is initproc img pages sproc]] =⇒ is validproc sproc

and furthermore, the invariant is preserved under transitions with valid inputs:

[[is validproc sproc; (ωproc sproc, i) ∈ olos responses]] =⇒ is validproc (δproc i sproc)

3.2 Specifying the Semantics for C0 and Assembly Processes

In this section, we shortly glance at the specification of our two particular process
semantics. There are several runtime errors, namely InvPtrErr, RepeatErr,
and ContinueErr. As correct programs do not feature these errors, we omit
further details, here. Vamp assembly provides a special instruction trap n for
the communication of a process with an operating system. The process-output
function ωproc sasm uses the number n to distinguish between the SendMsg, the
RecvMsg, and the ExFinish primitive; a number not assigned to a primitive
results in ContinueErr, i. e., the instruction will simply be skipped. The pa-
rameter msgval is specified by a register pointing into the memory. Finally, the
parameter msgnr is directly taken from a register. If neither a runtime error
occurred nor the next instruction is trap n, the process output is εΩ.

For a transition δproc sasm with the empty input εΣv, the assembly process
semantics employs the underlying, sequential assembly semantics δasm for its



transition. Otherwise, the response from Olos is reflected by placing a corre-
sponding value into a specified response register ; and in case of RecvSuccess,
the received message is additionally stored into the process memory.

For C0 processes, we have implemented functions with inline assembly that
wrap the necessary assembly instructions for the communication with Olos.
For illustration, Table 2 shows the implementation of the function olosRecvMsg,
which wraps the system call RecvMsg.

The C0-process semantics treats a call to these functions as a primitive, i. e.,
the output function ωproc sC0 simply determines whether the next statement is
a call to such a wrapper function, and the transition function δproc i sC0 directly
removes the function-call statement from the remaining program and updates
the C0 state sC0 according to the input i.

3.3 Extending Compiler Correctness to Processes

Recall that Leinenbach & Petrova [10] have shown compiler correctness for the
sequential C0 semantics with respect to the sequential part of Vamp assembly
(cf. Theorem 1). Below, we extend their result to the two corresponding process
semantics, which we have defined above.

First, we extend the existing simulation relation consistent for processes to
consisproc. This is mainly a syntactic adaptation and therefore we omit the details.
Second, we define predicates for the successful execution of processes analogous
to the sequential counterpart for assembly machines. Intuitively, a successful
execution is characterized by the absence of runtime errors (including the suf-
ficiency of memory). Furthermore, process transitions take inputs from Olos.
We make the output-input sequence ois explicit and require that the outputs
in the sequence equal the process output in the corresponding state as well as
that the sequence only contains matching output-input pairs, i. e., all pairs in
the sequence are contained in olos responses. Successful execution, we denote as:

⊢proc
C0 sC0

ois
−→ s ′C0 for C0 processes and crange ⊢proc

asm sasm
ois
−→ s ′asm for assembly

processes, respectively. We only need the code range crange to determine that
the assembly code does not modify itself. The maximal address, in contrast, that
we know from the sequential assembly semantics, is encoded in the process state.

Table 2. C0 implementation of the receive primitive

int olosRecvMsg (t msg ∗msg ptr, unsigned int msgnr) {
int result ;
asm { lw(r11, r30, asm offset(msg ptr));

lw(r12, r30, asm offset (msgnr));
trap(2);
sw(r22, r30, asm offset( result ));

};
return result;

}
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Fig. 3. Verification plan for the C0 implementation of the olosRecvMsg primitive

We overload code range taking a C0 process state sC0, which also contains the
static C0 program.

Recall that multiple assembly transitions might simulate a single C0 tran-
sition. With our notions of successful process execution, we reflect this circum-
stance by output-input sequences of different length. Nevertheless, both process
models should invoke the same primitives, i. e., all output-input pairs except for
internal steps (εΩ, εΣv), remain equal. For this purpose, we define a normalization
function ≫ois≪ over the ois sequences that simply removes all internal steps.

Finally, we extend the compiler theorem to processes:

Theorem 2 (Process Simulation). As in Theorem 1, we assume well-formed
C0 and assembly states sC0 and sasm, where the latter is not in a delay slot.
Moreover, we assume that the states are related by consisproc and there is a
successful execution from sC0 to a state s ′C0.

Then, it exists a sequence ois ′, a function alloc ′, and a state s ′
asm such that

the normalized sequences are equal, sasm successfully advances under ois ′ to s ′
asm,

which is not in a delay slot, and s ′C0 and s ′
asm are related by consisproc. Formally:

[[is validproc sC0; is validproc sasm; sasm.pcp = sasm.dpc + 4; consisproc sC0 alloc sasm;

⊢proc
C0 sC0

ois
−→ s ′C0]]

=⇒ ∃ois ′ alloc ′ s ′
asm. ≫ois≪ = ≫ois ′

≪ ∧ code range sC0 ⊢
proc
asm sasm

ois
′

−−→ s ′
asm ∧

s ′
asm.pcp = s ′

asm.dpc + 4 ∧ consisproc s ′C0 alloc ′ s ′
asm

Proof. We prove the theorem by induction on the output-input sequence ois.
The induction start is trivial. In the induction step, we distinguish the possible
process inputs. For an empty input εΣv, we employ Theorem 1.

For the other inputs, we examine the implementation of the corresponding
primitives. Fig. 3 shows the case that primitive olosRecvMsg is called in some
C0-process state siC0. From the induction hypothesis, we know that there exists a
corresponding assembly state snasm that satisfies the simulation relation consisproc.
Using the sequential C0 semantics, we execute the function-call statement. From



the sequential compiler theorem, we know that the execution (δ+asm) of the corre-
sponding, compiled code yields an assembly state s1asm satisfying the simulation
relation consisproc.

Starting in this state, we execute the inlined assembly code (cf. Table 2) of
the function body.6 After 2 steps, the code reaches the trap instruction in state
s3asm. If our implementation is correct, the assembly process signals the same
output ω in this state as the C0 process does in siC0. At this stage, the transition
function δproc uses an input i from Olos to proceed to s4asm. After a further
step, we arrive at the end of the inlined assembly code. From the final assembly
state s5asm and the C0 state s′C0 immediately before the execution of the inlined
assembly statement, we construct the corresponding s′′C0 immediately after the
assembly statement.7 For this to work, we have to show that the assembly code
did not disrupt the C0 execution environment (code, stack pointer, etc.). If the
assembly code preserves the integrity of the execution environment, we can again
establish the consisproc relation.

In state s′′C0, we employ the sequential C0 semantics to execute the return
statement and arrive in the state si+1

C0 . From the compiler theorem, we know that
there exists a corresponding assembly process such that the simulation relation
holds. If the primitive implementation is correct, the state s

i+1
C0 is equal to the

state computed from state siC0 by δproc with the input i.
The proof for the other primitives proceeds very similarly. ⊓⊔

4 The Cooperative Concurrent Application Model

The previous section presented a computational model for applications featuring
inputs and outputs for the communication with Olos. For the verification of ap-
plications, however, the communication primitives are distracting. Most notably,
Isabelle/Simpl cannot deal with inputs and outputs. Hence, we prefer a coop-
erative concurrent execution model, where we can sequentially reason about a
complete computation phase, i. e., between two calls to the ExFinish primitive.
This execution model forms the basis of the application semantics in Simpl.

Recall that during the compute phase, the sole task of Olos is the exchange
of messages with the application that is scheduled to compute in the current
slot. Hence, we can perceive the computation of Olos and the application as a
single, sequential program with two separate states: The internal process state,
on the one hand, and the Olos message buffers, on the other hand. While the
internal state can be accessed via normal C0 statements, the message buffers are
only accessible through the Olos-communication primitives.

The definition of this new computational model is straightforward: Each state
is a pair (sproc, mb) of a process state sproc and a file of message buffers mb.
The transition function emulates the behavior of Olos during the computation

6 Recall that a transition δasm is equal to δproc εΣv.
7 For reasoning about inlinedVamp assembly, we have been able to reuse previous work
[15]. Note, however, that the semantics of the trap instruction is Olos-specific.



phase (assuming the corresponding application is scheduled). It distinguishes the
output of the process and computes the corresponding input. Formally:

δcc (sproc, mb) ≡
case ωproc sproc of
SendMsg msgval msgnr ⇒
if msgnr < MSGCOUNT

then (δproc SendSuccess sproc, mb[msgnr := msgval ])
else (δproc InvalidMsgNr sproc, mb)

| RecvMsg msgnr ⇒
if msgnr < MSGCOUNT then (δproc (RecvSuccess mb[msgnr ]) sproc, mb)
else (δproc InvalidMsgNr sproc, mb)

| ExFinish ⇒ (δproc FinishSuccess sproc, mb)
| InvPtrErr ⇒ (δproc InvPtrResponse sproc, mb)
| RepeatErr ⇒ (sproc, mb)
| ContinueErr ⇒ (δproc Continue sproc, mb)
| εΩ ⇒ (δproc εΣv sproc, mb)

Note that this model uses the generic process interface, i. e., sproc might
equally refer to a C0 or assembly state. Thus, it is easy to lift process simu-
lation (Theorem 2) to cooperative concurrently executing applications:

Theorem 3 (Cooperative Concurrent Simulation). Assuming (a) well-
formed process states sC0 and sasm, where the latter is not in a delay slot, (b) the
absence of runtime errors in sC0 and all its immediate successors (predicate
runtime error does not hold), and (c) a well-formed file of message buffers mb

(predicate is valid mb holds), then a C0 transition in the cooperative concurrent
model simulates a number of cooperative concurrent assembly steps. Formally:

[[is validproc sC0; is validproc sasm; sasm.pcp = sasm.dpc + 4; consisproc sC0 alloc sasm;
¬ runtime error sC0; is valid mb mb]]
=⇒ ∃n alloc ′ s ′

asm.

let (s ′
C0, mb ′) = δcc (sC0, mb)

in (s ′
asm, mb ′) = (δcc

n) (sasm, mb) ∧ consisproc s ′
C0 alloc ′ s ′

asm

Proof. At first, we show that the inputs i chosen by function δcc always match
the process output. Hence, the transition from sC0 to δproc i sC0 is a successful
execution. With Theorem 2, we know that there is a corresponding output-input
sequence ois ′ such that
– the sequence ois ′ contains exactly one pair (ωproc sC0, i) as well as a number

of pairs (εΩ, εΣv), i. e., ≫ois ′≪ = [(ωproc sC0, i)], and
– there is a successful assembly execution under ois ′ starting in sasm and ending

in a state s ′asm, where consisproc s ′C0 alloc ′ s ′asm holds.
As δcc reacts with an empty input whenever the process outputs εΩ, function δcc
yields the assembly state s ′asm if it is applied |ois ′| times to sasm. Furthermore,
the message buffers are equal in both cases. ⊓⊔

Verifying Applications in Isabelle/Simpl. The chief attraction of our co-
operative concurrent execution model is that it allows us to reuse Isabelle/Simpl



[14]. The necessary adaptation of the existing technology for application verifi-
cation is straightforward: It amounts to specify the effects of the primitives for
SendMsg and RecvMsg in the Simpl language and show that this specifica-
tion corresponds with the definition of δcc for these cases. Using the Hoare logic
of Isabelle/Simpl, we can conveniently establish the absence of runtime errors
as well as efficiently reason about functional correctness of applications between
two calls to the ExFinish primitive.

5 Embedding Applications into the Overall ECU Model

In the previous section, we have claimed that the transition function δcc of the
cooperative concurrent application model emulates the Olos transitions during
the computation phase iff the corresponding application is scheduled. In this
section, we prove that claim. Formally, we express our claim with the help of
a projection function Πp, which extracts the state of the application p, and an
injection injp scc sECU, which updates the state of application p in the ECU state
sECU by scc. We state:

Theorem 4 (Application Embedding). We assume that (a) the application
p is computing in the ECU state s according to the static schedule t and (b) that
p does not call for ExFinish. Then, the projection of p followed by a transition
of δcc and its injection into s is equal to a transition of δECU. Formally:

[[is computing p t s; ¬ calls finish p s]] =⇒ injp (δcc (Πp s)) s = δECU t ⊥ s

Proof. We have proven this fact in Isabelle/HOL. ⊓⊔

Note that Olos leaves the computing state (cf. Sect. 2.2) when an application
calls for ExFinish, i. e., predicate calls finish pid s holds. In this case, the tran-
sition δECU tables ⊥ s only raises the idle flag and sends FinishSuccess to
process pid. From the Olos specification, we know that at all other ECU states,
the process states remain constant.

6 Reasoning about Applications – a Practical Example

Initial Set-Up

compute

olosExFinish

Fig. 4. General control-
flow of applications

So far, we have elaborated on the foundation of our
verification approach. Now, we take our arguments
a step further and venture a practical example. For
this purpose, we use a simple application program for
cruise control. Note that all Olos applications share
a common control flow, which is depicted in Fig. 4:
After an application-specific set-up, they implement
an infinite loop. The loop body contains a function
call to a function compute, which implements the ac-
tual functionality of the application, and a call to the
ExFinish primitive.



int compute() {
unsigned int command; unsigned int current speed;

dummy = olosRecvMsg(buffer, 0u); command = buffer−>Field; // read command
dummy = olosRecvMsg(buffer, 1u); current speed = buffer−>Field; // read current speed

// target speed adjustment
if (enabled) {

if (command == CC INCREASE) {
if (target speed < MAX SPEED − 1u) { target speed = target speed + 2u; }

}
else if (command == CC DECREASE) {

if (target speed > MIN SPEED + 1u) { target speed = target speed − 2u; }
}
else if (command != CC SET) { enabled = false; }

}
else if (current speed >= MIN SPEED && (command == CC SET ||

command == CC INCREASE || command == CC DECREASE)) {
enabled = true;
if (current speed >= MAX SPEED) { target speed = MAX SPEED; }
else { target speed = current speed; }

}

// speed regulation
∗buffer = INIT BUFFER;
if (!enabled) { dummy = olosSendMsg(buffer, 2u); dummy = olosSendMsg(buffer, 3u); }
else if (current speed > target speed) {

dummy = olosSendMsg(buffer, 2u);
buffer−>Field = current speed − target speed; dummy = olosSendMsg(buffer, 3u);

}
else {

dummy = olosSendMsg(buffer, 3u);
buffer−>Field = target speed − current speed; dummy = olosSendMsg(buffer, 2u);

}

return 0;
}

Fig. 5. Function compute of our simple cruise-control application

Our example program features a global variable target speed storing the
speed that the regulator is aiming for. Furthermore, there is a global Boolean
variable enabled that is true iff the speed control is enabled.

The compute function (see Fig. 5) reads the message buffer 0 to receive one of
the commands ON, OFF, INCREASE, and DECREASE as well as the message
buffer 1 to receive the current speed. The function adjusts the global variables
wrt. the received command and subtracts the current from the target speed. If
the difference is positive, the function sends the difference to message buffer 2
(which we assume to be read by the accelerator unit) and value 0 to message
buffer 3 (which we assume to be read by the brake unit). If the difference is
negative, the function sends the absolute value to buffer 3 and value 0 to buffer
2. Afterwards, compute returns and the program calls ExFinish.

For the verification of the compute function, we employ the existing technol-
ogy for sequential reasoning: At first, we mechanically translate the C0 code into
Simpl. Then, we formally specify the functionality in terms of Hoare triples and,
conveniently relying on the Hoare logics, prove the correctness of our specifica-



tion. Obviously, the containing loop alters neither the application’s variables nor
the message buffers. Thus, our proven property holds for a complete computation
phase (i. e., the loop body). Finally, we know from the property transfer theorem
of Isabelle/Simpl that there is an equivalent property over the C0 semantics.

Using Theorem 3, we can then infer that the property can be translated
down to assembly level. Furthermore, Theorem 4 allows us to infer properties
about the whole ECU behavior by combining verification results from the ap-
plications running on the ECU. Recall that our example application relied on
several assumptions: The message buffers 0 and 1 are assumed to stem from sen-
sors, and the buffers 2 and 3 should be sent to other control units. Consequently,
the static schedule should provide slots, where the messages received from the
bus are stored into the buffers 0 and 1; moreover, the buffers 2 and 3 should
be sent onto the bus. Furthermore, the applications sharing the same ECU as
our example application, should not alter the buffers after receiving or before
sending, respecively. In addition, we have assumed that the example application
calls ExFinish before the slot end. Within the Hoare logic, we can prove that
our compute function terminates. Thus, the only remaining issue is to find an
upper bound for the worst-case execution time, which is easily done by static
analysis [16]. Eventually, we can then argue that the values computed by our
example application are indeed sent onto the bus several slots later.

7 Conclusion

Based on existing technology for ordinary program verification, we formally
proved the foundation of a pervasive verification approach for applications com-
municating with the operating system Olos. Additionally, we provided an ap-
plication example illustrating that our approach can indeed be used in practice.

With our work, we respond to a long lasting grand challenge [3]. Despite
many recent achievements in operating-systems verification [4], we only know of
a single project that attempted pervasive systems verification: Bevier et. al [17]
verified the correctness of KIT, a small assembly program that provides task
isolation, device I/O, and single word message passing. Moreover, they ventured
into the verification of applications but could not fully integrate their results.
We can only refer to their work as groundbreaking because of KIT’s simplicity.

Though even our computer system is simple, it is practically usable and the
developed verification technique as well as the overall proof architecture may
be reused for real computer systems. We implemented Olos as well as our
example application in a C variant and employed a verified compiler for the
mechanic translation into executable code. Thus, we are able to verify programs
on the source code level—conveniently in a Hoare logic using the verification
environment Isabelle/Simpl—and can then transfer the proven properties down
to the assembly level (or even further [9]), e. g., to combine it with properties of
the operating system or peripheral devices.

Integrating different layers of abstraction into a coherent theory is an im-
portant prerequisite for efficient reasoning. The verification engineer can then



choose a convenient abstraction layer for reasoning although the results might
eventually be needed at a different abstraction layer. We see our contribution as
an important milestone towards an evidence-based validation of safety-critical
computer systems. Pervasive verification and software engineering should be-
come two complementing disciplines aiming at the same target: perfectly reliable
software.
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27–69
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