Abstract
In this paper, we study the soundness amplification by repetition of cryptographic protocols. As a tool, we use the Chernoff Information. We specify the number of attempts or samples required to distinguish two distributions efficiently in various protocols. This includes weakly verifiable puzzles such as CAPTCHA-like challenge-response protocols, interactive arguments in sequential composition scenario and cryptanalysis of block ciphers. As our main contribution, we revisit computational soundness amplification by sequential repetition in the threshold case, i.e when completeness is not perfect. Moreover, we outline applications to the Leftover Hash Lemma and iterative attacks on block ciphers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahn, L.V., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI Problems for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003)
Baignères, T.: Quantitative Security of Block Ciphers: Designs and Cryptanalysis Tools. PhD thesis, EPFL (2008)
Barak, B., Goldreich, O.: Universal arguments and their applications. In: Electronic Colloquium on Computational Complexity (2001)
Bellare, M., Impagliazzo, R., Naor, M.: Does Parallel Repetition Lower the Error in Computationally Sound Protocols. In: Proceedings of the Thirty-Eighth Annual IEEE Symposium on Foundations of Computer Science, pp. 374–383 (1997)
Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)
Blondeau, C., Gérard, B.: On the Data Complexity of Statistical Attacks Against Block Ciphers. In: Cryptology ePrint (2009)
Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)
Canetti, R., Halevi, S., Steiner, M.: Hardness Amplification of Weakly Verifiable Puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer, Heidelberg (2005)
Chernoff, H.: Sequential Analysis and Optimal Design. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 8. SIAM, Philadelphia (1972)
Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM Journal on Computing 17(2), 230–261 (1988)
Chung, K., Vadhan, S.: Tight Bounds for Hashing Block Sources. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 357–370. Springer, Heidelberg (2008)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications. John Wiley & Sons, Chichester (1991)
Damgård, I., Pfitzmann, B.: Sequential Iteration of Interactive Arguments and an Efficient Zero-knowledge Argument for NP. Technical report, BRICS Report Series, Department of Computer Science, University of Aarhus (1997)
Feige, U., Verbitsky, O.: Error Reduction by Parallel Repetition - A Negative Result. Combinatorica 22, 461–478 (2001)
Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudo-randomness. Algorithms and Combinatorics. Springer, Heidelberg (1999)
Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association 58(301), 13–30 (1963)
Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-Type Direct Product Theorems. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 500–516. Springer, Heidelberg (2007)
Impagliazzo, R., Jaiswal, R., Kabanets, V.: Chernoff-Type Direct Product Theorems. Journal of Cryptology 22(1), 75–92 (2009)
Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random Generation from One-way Functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 12–24. ACM Press, New York (1989)
Juta, C.S.: Almost Optimal Bounds for Direct Product Threshold Theorem. Technical report, ECCC (2010)
Jutla, C.S.: Almost Optimal Bounds for Direct Product Threshold Theorem. In: Theory of Cryptography Conference. Springer, Heidelberg (2010)
Kullback, S., Leibler, R.A.: On Information and Sufficiency. The Annals of Mathematical Statistics 22(1), 79–86 (1951)
Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)
Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM Journal of Computing 17, 373–386 (1988)
Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Mori, G., Malik, J.: Recognising Objects in Adversarial Clutter: Breaking a Visual CAPTCHA. In: IEEE Conference Compurt Vision and Pattern Recognition, pp. 134–141. IEEE CS Press, Los Alamitos (2003)
Pietrzak, K., Wikström, D.: Parallel Repetition of Computationally Sound Protocols Revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 86–102. Springer, Heidelberg (2007)
Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27, 763–803 (1998)
Rényi, A.: On Measures of Information and Entropy. In: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561 (1960)
Yan, J., Salah, A.: CAPTCHA Security: A Case Study. Journal of IEEE Security and Privacy 7, 22–28 (2009)
Zuckerman, D.: Simulating BPP using a general weak random source. Algorithmica 16(4-5), 367–391 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baignères, T., Sepehrdad, P., Vaudenay, S. (2010). Distinguishing Distributions Using Chernoff Information. In: Heng, SH., Kurosawa, K. (eds) Provable Security. ProvSec 2010. Lecture Notes in Computer Science, vol 6402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16280-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-16280-0_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16279-4
Online ISBN: 978-3-642-16280-0
eBook Packages: Computer ScienceComputer Science (R0)