Skip to main content

Ontology-Based Anonymization of Categorical Values

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6408))

Abstract

The analysis of sensible data requires a proper anonymization of values in order to preserve the privacy of individuals. Information loss should be minimized during the masking process in order to enable a proper exploitation of data. Even though several masking methods have been designed for numerical data, very few of them deal with categorical (textual) information. In this case, the quality of the anonymized dataset is closely related to the preservation of semantics, a dimension which is commonly neglected of shallowly considered in related words. In this paper, a new masking method for unbounded categorical attributes is proposed. It relies on the knowledge modeled in ontologies in order to semantically interpret the input data and perform data transformations aiming to minimize the loss of semantic content. On the contrary to exhaustive methods based on simple hierarchical structures, our approach relies on a set of heuristics in order to guide and optimize the masking process, ensuring its scalability when dealing with big and heterogenous datasets and wide ontologies. The evaluation performed over real textual data suggests that our method is able to produce anonymized datasets which significantly preserve data semantics in comparison to apporaches based on data distribution metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proceedings of the 21st International Conference on Data Engineering (ICDE), pp. 217–228 (2005)

    Google Scholar 

  2. Cimiano, P.: Ontology Learning and Population from Text. In: Algorithms, Evaluation and Applications. Springer, Heidelberg (2006)

    Google Scholar 

  3. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V., Sachs, S.J.: A Search and Metadata Engine for the Semantic Web. In: Proc. 13th ACM Conference on Information and Knowledge Management, pp. 652–659. ACM Press, New York (2004)

    Google Scholar 

  4. Domingo-Ferrer, J.: A survey of inference control methods for privacy-preserving data mining. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining: Models and Algorithms. Adv. in Database Systems, vol. 34, pp. 53–80. Springer, New York (2008)

    Chapter  Google Scholar 

  5. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  6. Guarino, N.: Formal Ontology in Information Systems. In: Guarino, N. (ed.) 1st Int. Conf. on Formal Ontology in Information Systems, pp. 3–15. IOS Press, Trento (1998)

    Google Scholar 

  7. He, Y., Naughton, J.F.: Anonymization of Set-Valued Data via Top-Down, Local Generalization. In: 35th Int. Conf. VLDB, Lyon, France, vol. 2, pp. 934–945 (2009)

    Google Scholar 

  8. Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Minig (KDD), pp. 279–288 (2002)

    Google Scholar 

  9. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc. Int. Conf. on Research in Computational Linguistics, Japan, pp. 19–33 (1997)

    Google Scholar 

  10. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum (ed.) WordNet: An Electronic Lexical Database, pp. 265–283. MIT Press, Cambridge (1998)

    Google Scholar 

  11. Lefevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian Multidimensional K-Anonymity. In: Proceedings on the 22nd Int. Conf. on Data Engineering, ICDE, p. 25 (2006)

    Google Scholar 

  12. Li, T., Li, N.: Towards optimal k-anonymization. Data & Knowledge Engineering 65, 22–39 (2008)

    Article  Google Scholar 

  13. Porter: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    Article  Google Scholar 

  14. Rada, R., Mili, H., Bichnell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics 9(1), 17–30 (1989)

    Article  Google Scholar 

  15. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k--anonymity and its enforcement through generalization and suppression, Technical Report SRI-CSL-98-04, SRI Computer Science Laboratory (1998)

    Google Scholar 

  16. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-valued data. In: Proc. of VLDB (2008)

    Google Scholar 

  18. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proc. 32nd Annual Meeting of the Association for Computational Linguistics, New Mexico, USA, pp. 133–138 (1994)

    Google Scholar 

  19. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Wai-Chee Fu, A.: Utility-Based Anonymization for Privacy Preservation with Less Information Loss. In: ACM SIGKDD Explorations Newsletter, vol. 8 I.2, pp. 21–30 (2006)

    Google Scholar 

  20. Martínez, S., Sánchez, D., Valls, A., Batet, M.: The role of ontologies in the anonymization of textual variables. In: Proceedings of the 13th International Conference of the Catalan Association of Artificial Intelligence (2010) (in Press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez, S., Sánchez, D., Valls, A. (2010). Ontology-Based Anonymization of Categorical Values. In: Torra, V., Narukawa, Y., Daumas, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2010. Lecture Notes in Computer Science(), vol 6408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16292-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16292-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16291-6

  • Online ISBN: 978-3-642-16292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics