Abstract
The analysis of sensible data requires a proper anonymization of values in order to preserve the privacy of individuals. Information loss should be minimized during the masking process in order to enable a proper exploitation of data. Even though several masking methods have been designed for numerical data, very few of them deal with categorical (textual) information. In this case, the quality of the anonymized dataset is closely related to the preservation of semantics, a dimension which is commonly neglected of shallowly considered in related words. In this paper, a new masking method for unbounded categorical attributes is proposed. It relies on the knowledge modeled in ontologies in order to semantically interpret the input data and perform data transformations aiming to minimize the loss of semantic content. On the contrary to exhaustive methods based on simple hierarchical structures, our approach relies on a set of heuristics in order to guide and optimize the masking process, ensuring its scalability when dealing with big and heterogenous datasets and wide ontologies. The evaluation performed over real textual data suggests that our method is able to produce anonymized datasets which significantly preserve data semantics in comparison to apporaches based on data distribution metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proceedings of the 21st International Conference on Data Engineering (ICDE), pp. 217–228 (2005)
Cimiano, P.: Ontology Learning and Population from Text. In: Algorithms, Evaluation and Applications. Springer, Heidelberg (2006)
Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V., Sachs, S.J.: A Search and Metadata Engine for the Semantic Web. In: Proc. 13th ACM Conference on Information and Knowledge Management, pp. 652–659. ACM Press, New York (2004)
Domingo-Ferrer, J.: A survey of inference control methods for privacy-preserving data mining. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining: Models and Algorithms. Adv. in Database Systems, vol. 34, pp. 53–80. Springer, New York (2008)
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Guarino, N.: Formal Ontology in Information Systems. In: Guarino, N. (ed.) 1st Int. Conf. on Formal Ontology in Information Systems, pp. 3–15. IOS Press, Trento (1998)
He, Y., Naughton, J.F.: Anonymization of Set-Valued Data via Top-Down, Local Generalization. In: 35th Int. Conf. VLDB, Lyon, France, vol. 2, pp. 934–945 (2009)
Iyengar, V.S.: Transforming data to satisfy privacy constraints. In: Proceedings of the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Minig (KDD), pp. 279–288 (2002)
Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proc. Int. Conf. on Research in Computational Linguistics, Japan, pp. 19–33 (1997)
Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum (ed.) WordNet: An Electronic Lexical Database, pp. 265–283. MIT Press, Cambridge (1998)
Lefevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian Multidimensional K-Anonymity. In: Proceedings on the 22nd Int. Conf. on Data Engineering, ICDE, p. 25 (2006)
Li, T., Li, N.: Towards optimal k-anonymization. Data & Knowledge Engineering 65, 22–39 (2008)
Porter: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
Rada, R., Mili, H., Bichnell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernetics 9(1), 17–30 (1989)
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k--anonymity and its enforcement through generalization and suppression, Technical Report SRI-CSL-98-04, SRI Computer Science Laboratory (1998)
Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)
Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-valued data. In: Proc. of VLDB (2008)
Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proc. 32nd Annual Meeting of the Association for Computational Linguistics, New Mexico, USA, pp. 133–138 (1994)
Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Wai-Chee Fu, A.: Utility-Based Anonymization for Privacy Preservation with Less Information Loss. In: ACM SIGKDD Explorations Newsletter, vol. 8 I.2, pp. 21–30 (2006)
Martínez, S., Sánchez, D., Valls, A., Batet, M.: The role of ontologies in the anonymization of textual variables. In: Proceedings of the 13th International Conference of the Catalan Association of Artificial Intelligence (2010) (in Press)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martínez, S., Sánchez, D., Valls, A. (2010). Ontology-Based Anonymization of Categorical Values. In: Torra, V., Narukawa, Y., Daumas, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2010. Lecture Notes in Computer Science(), vol 6408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16292-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-16292-3_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16291-6
Online ISBN: 978-3-642-16292-3
eBook Packages: Computer ScienceComputer Science (R0)