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MEASURING THE INTERACTIONS AMONG VARIABLES OF

FUNCTIONS OVER THE UNIT HYPERCUBE

JEAN-LUC MARICHAL AND PIERRE MATHONET

Abstract. By considering a least squares approximation of a given square
integrable function f ∶ [0,1]n → R by a multilinear polynomial of a specified
degree, we define an index which measures the overall interaction among vari-
ables of f . This definition extends the concept of Banzhaf interaction index
introduced in cooperative game theory. Our approach is partly inspired from
multilinear regression analysis, where interactions among the independent vari-
ables are taken into consideration. We show that this interaction index has ap-
pealing properties which naturally generalize several properties of the Banzhaf
interaction index. In particular, we interpret this index as an expected value
of the difference quotients of f or, under certain natural conditions on f , as an
expected value of the derivatives of f . Finally, we discuss a few applications
of the interaction index in aggregation function theory.

1. Introduction

Sophisticated mathematical models are extensively used in a variety of areas
of mathematics and physics, and especially in applied fields such as engineering,
life sciences, economics, finance, and many others. Here we consider the simple
situation where the model aims at explaining a single dependent variable, call it y,
in terms of n independent variables x1, . . . , xn. Such a model is usually described
through an equation of the form

y = f(x1, . . . , xn),
where f is a real function of n variables.

Now, suppose that the function f describing the model is given and that we want
to investigate its behavior through simple terms. For instance, suppose we want
to measure the overall contribution (importance or influence) of each independent
variable to the model. A natural approach to this problem consists in defining the
overall importance of each variable as the coefficient of this variable in the least
squares linear approximation of f . This approach was considered by Hammer and
Holzman [14] for pseudo-Boolean functions and cooperative games f ∶ {0,1}n → R.
Interestingly enough, they observed that the coefficient of each variable in the linear
approximation is exactly the Banzhaf power index [3, 7] of the corresponding player
in the game f .

In many practical situations, the information provided by the overall importance
degree of each variable may be far insufficient due to the possible interactions among
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the variables. Then, a more flexible approach to investigate the behavior of f

consists in measuring an overall importance degree for each combination (subset)
of variables. Such a concept was first introduced in [16] for Boolean functions
f ∶ {0,1}n → {0,1} (see also [5, 6]), then in [17] for pseudo-Boolean functions and
games f ∶ {0,1}n → R (see also [18]), and in [9] for square integrable functions
f ∶ [0,1]n → R.

In addition to these importance indexes, we can also measure directly the inter-
action degree among the variables by defining an overall interaction index for each
combination of variables. This concept was introduced axiomatically in [13] (see
also [8]) for games f ∶{0,1}n → R. However, it has not yet been extended to real
functions defined on [0,1]n, even though such functions are of growing importance
for instance in aggregation function theory. In this paper we intend to fill this
gap by defining and investigating an appropriate index to measure the interaction
degree among variables of a given square integrable function f ∶ [0,1]n → R.

Our sources of inspiration to define such an index are actually threefold:

In cooperative game theory: Interaction indexes were introduced axiomat-
ically a decade ago [13] for games f ∶{0,1}n → R (see also [8]). The best
known interaction indexes are the Banzhaf and Shapley interaction indexes,
which extend the Banzhaf and Shapley power indexes. Following Hammer
and Holzman’s approach [14], it was shown in [11] that the Banzhaf in-
teraction index can be obtained from least squares approximations of the
game under consideration by games whose multilinear representations are
of lower degrees.

In analysis: Considering a sufficiently differentiable real function f of several
variables, the local interaction among certain variables at a given point a

can be obtained through the coefficients of the Taylor expansion of f at
a, that is, through the coefficients of the local polynomial approximation
of f at a. By contrast, if we want to define an overall interaction index,
we naturally have to consider a global approximation of f by a polynomial
function.

In statistics: Multilinear statistical models have been proposed to take into
account the interaction among the independent variables (see for instance
[1]): two-way interactions appear as the coefficients of leading terms in qua-
dratic models, three-way interactions appear as the coefficients of leading
terms in cubic models, and so forth.

On the basis of these observations, we naturally consider the least squares ap-
proximation problem of a given square integrable function f ∶ [0,1]n → R by a poly-
nomial of a given degree. As multiple occurrences in combinations of variables are
not relevant, we will only consider multilinear polynomial functions. Then, given a
subset S ⊆ {1, . . . , n}, an index I(f,S) measuring the interaction among the vari-
ables {xi ∶ i ∈ S} of f is defined as the coefficient of the monomial∏i∈S xi in the best
approximation of f by a multilinear polynomial of degree at most ∣S∣. This defini-
tion is given and discussed in Section 2, where we also provide an interpretation in
the context of cooperative fuzzy games (Remark 1).

In Section 3 we show that this new index has many appealing properties, such
as linearity, continuity, and symmetry. In particular, we show that, similarly to
the Banzhaf interaction index introduced for games, the index I(f,S) can be inter-
preted in a sense as an expected value of the discrete derivative of f in the direction
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of S (Theorem 10) or, equivalently, as an expected value of the difference quotient
of f in the direction of S (Corollary 11). Under certain natural conditions on f ,
the index can also be interpreted as an expected value of the derivative of f in the
direction of S (Proposition 7). These latter results reveal a strong analogy between
the interaction index and the overall importance index introduced by Grabisch and
Labreuche [9].

In Section 4 we discuss certain applications in aggregation function theory, in-
cluding the computation of explicit expressions of the interaction index for the
discrete Choquet integrals. We also define and investigate a normalized version
of the interaction index to compare different functions in terms of interaction de-
grees of their variables and a coefficient of determination to measure the quality of
multilinear approximations.

We employ the following notation throughout the paper. Let I
n denote the

n-dimensional unit cube [0,1]n. We denote by F (In) the class of all functions
f ∶ In → R and by L2(In) the class of square integrable functions f ∶ In → R (modulo
equality almost everywhere). For any S ⊆ N = {1, . . . , n}, we denote by 1S the
characteristic vector of S in {0,1}n.

2. Interaction indexes

In this section we first recall the concepts of power and interaction indexes in-
troduced in cooperative game theory and how the Banzhaf index can be obtained
from the solution of a least squares approximation problem. Then we show how
this approximation problem can be extended to functions in L2(In) and, from this
extension, we introduce an interaction index for such functions.

Recall that a (cooperative) game on a finite set of players N = {1, . . . , n} is a
set function v∶2N → R which assigns to each coalition S of players a real number
v(S) representing the worth of S.1 Through the usual identification of the subsets
of N with the elements of {0,1}n, a game v∶2N → R can be equivalently described
by a pseudo-Boolean function f ∶{0,1}n → R. The correspondence is given by
v(S) = f(1S) and
(1) f(x) = ∑

S⊆N

v(S) ∏
i∈S

xi ∏
i∈N∖S

(1 − xi).
Equation (1) shows that any pseudo-Boolean function f ∶{0,1}n → R can always be
represented by a multilinear polynomial of degree at most n (see [15]), which can
be further simplified into

(2) f(x) = ∑
S⊆N

a(S) ∏
i∈S

xi ,

where the set function a∶2N → R, called the Möbius transform of v, is defined by

a(S) = ∑
T⊆S

(−1)∣S∣−∣T ∣ v(T ).
Let GN denote the set of games on N . A power index [21] on N is a function

φ∶GN × N → R that assigns to every player i ∈ N in a game f ∈ GN his/her
prospect φ(f, i) from playing the game. An interaction index [13] onN is a function
I ∶GN × 2N → R that measures in a game f ∈ GN the interaction degree among the
players of a coalition S ⊆ N .

1Usually, the condition v(∅) = 0 is required for v to define a game. However, we do not need

this restriction in the present paper.
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For instance, the Banzhaf interaction index [13] of a coalition S ⊆ N in a game
f ∈ GN is defined (in terms of the Möbius transform of f) by

(3) IB(f,S) = ∑
T⊇S

(1
2
)∣T ∣−∣S∣a(T ),

and the Banzhaf power index [7] of a player i ∈ N in a game f ∈ GN is defined by
φB(f, i) = IB(f,{i}).

It is noteworthy that IB(f,S) can be interpreted as an average of the S-difference
(or discrete S-derivative) ∆Sf of f . Indeed, it can be shown (see [11, §2]) that

(4) IB(f,S) = 1

2n
∑

x∈{0,1}n
(∆Sf)(x),

where ∆Sf is defined inductively by ∆∅f = f and ∆Sf = ∆{i}∆S∖{i}f for i ∈ S,
with ∆{i}f(x) = f(x ∣ xi = 1) − f(x ∣ xi = 0).

We now recall how the Banzhaf interaction index can be obtained from a least
squares approximation problem. For k ∈ {0, . . . , n}, denote by Vk the set of all
multilinear polynomials g∶{0,1}n → R of degree at most k, that is of the form

(5) g(x) = ∑
S⊆N
∣S∣⩽k

c(S)∏
i∈S

xi ,

where the coefficients c(S) are real numbers. For a given pseudo-Boolean function
f ∶{0,1}n → R, the best kth approximation of f is the unique multilinear polynomial
fk ∈ Vk that minimizes the squared distance

∑
x∈{0,1}n

(f(x) − g(x))2
among all g ∈ Vk. A closed-form expression of fk was given in [14] for k = 1 and
k = 2 and in [11] for arbitrary k ⩽ n. In fact, when f is given in its multilinear form
(2) we obtain

fk(x) = ∑
S⊆N
∣S∣⩽k

ak(S)∏
i∈S

xi,

where

ak(S) = a(S) + (−1)k−∣S∣ ∑
T⊇S
∣T ∣>k

(∣T ∣ − ∣S∣ − 1
k − ∣S∣ ) (

1

2
)∣T ∣−∣S∣a(T ).

It is then easy to see that

(6) IB(f,S) = a∣S∣(S).
Thus, IB(f,S) is exactly the coefficient of the monomial ∏i∈S xi in the best ap-
proximation of f by a multilinear polynomial of degree at most ∣S∣.

Taking into account this approximation problem, we now define an interaction
index for functions in L2(In) as follows. Denote by Wk the set of all multilinear
polynomials g∶ In → R of degree at most k. Clearly, these functions are also of the
form (5). For a given function f ∈ L2(In), we define the best kth (multilinear) ap-
proximation of f as the multilinear polynomial fk ∈Wk that minimizes the squared
distance

(7) ∫
In
(f(x) − g(x))2 dx

among all g ∈Wk.
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It is easy to see that Wk is a linear subspace of L2(In) of dimension ∑k
s=0 (ns).

Indeed, Wk is the linear span of the basis Bk = {vS ∶ S ⊆ N, ∣S∣ ⩽ k}, where
the functions vS ∶ In → R are defined by vS(x) = ∏i∈S xi. Note that formula (7)
also writes ∥f − g∥2 where ∥ ⋅ ∥ is the standard norm of L2(In) associated with
the inner product ⟨f, g⟩ = ∫In f(x)g(x)dx. Therefore, using the general theory of
Hilbert spaces, the solution of this approximation problem exists and is uniquely
determined by the orthogonal projection of f onto Wk. This projection can be
easily expressed in any orthonormal basis of Wk. But here it is very easy to see
that the set B′k = {wS ∶ S ⊆N, ∣S∣ ⩽ k}, where wS ∶ I

n
→ R is given by

wS(x) = 12∣S∣/2∏
i∈S

(xi −
1

2
) = 12∣S∣/2 ∑

T⊆S

( − 1

2
)∣S∣−∣T ∣vT (x),

forms such an orthonormal basis for Wk.
The following immediate theorem gives the components of the best kth approx-

imation of a function f ∈ L2(In) in the bases Bk and B′k.

Theorem 1. For every k ∈ {0, . . . , n}, the best kth approximation of f ∈ L2(In) is
the function

(8) fk = ∑
T⊆N
∣T ∣⩽k

⟨f,wT ⟩wT = ∑
S⊆N
∣S∣⩽k

ak(S)vS ,

where

(9) ak(S) = ∑
T⊇S
∣T ∣⩽k

(− 1

2
)∣T ∣−∣S∣12∣T ∣/2 ⟨f,wT ⟩.

By analogy with (6), to measure the interaction degree among variables of an
arbitrary function f ∈ L2(In), we naturally define an index I ∶L2(In) × 2N → R asI(f,S) = a∣S∣(S), where a∣S∣(S) is obtained from f by (9). We will see in the next
section that this index indeed measures an importance degree when ∣S∣ = 1 and an
interaction degree when ∣S∣ ⩾ 2.
Definition 2. Let I ∶L2(In) × 2N → R be defined as I(f,S) = 12∣S∣/2⟨f,wS⟩, that
is,

(10) I(f,S) = 12∣S∣∫
In
f(x)∏

i∈S

(xi −
1

2
)dx.

Thus we have defined an interaction index from an approximation (projection)
problem. Conversely, this index characterizes this approximation problem. Indeed,
as the following result shows, the best kth approximation of f ∈ L2(In) is the unique
function of Wk that preserves the interaction index for all the s-subsets such that
s ⩽ k. The discrete analogue of this result was established in [11] for the Banzhaf
interaction index (3).

Proposition 3. A function fk ∈Wk is the best kth approximation of f ∈ L2(In) if
and only if I(f,S) = I(fk, S) for all S ⊆ N such that ∣S∣ ⩽ k.
Proof. By definition, we have I(f,S) = I(fk, S) if and only if ⟨f − fk,wS⟩ = 0 for
all S ⊆N such that ∣S∣ ⩽ k, and the latter condition characterizes the projection of
f onto Wk. �
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The explicit conversion formulas between the interaction index and the best
approximation can be easily derived from the preceding results. On the one hand,
by (9), we have

ak(S) = ∑
T⊇S
∣T ∣⩽k

(− 1

2
)∣T ∣−∣S∣ I(f,T ) , for ∣S∣ ⩽ k.

On the other hand, by Proposition 3 and Equation (8), we also have

I(f,S) = I(fk, S) = 12∣S∣/2 ⟨fk,wS⟩
= 12∣S∣/2 ∑

T⊆N
∣T ∣⩽k

ak(T ) ⟨vT ,wS⟩

that is, by calculating the inner product,

(11) I(f,S) = ∑
T⊇S
∣T ∣⩽k

(1
2
)∣T ∣−∣S∣ ak(T ) , for ∣S∣ ⩽ k.

We also note that, by (8), the best kth approximation of f can be expressed in
terms of I as

(12) fk(x) = ∑
T⊆N
∣T ∣⩽k

I(f,T )∏
i∈T

(xi −
1

2
).

Using the notation 1

2
= ( 1

2
, . . . , 1

2
), the Taylor expansion formula then shows that

I(f,S) = (DSfk)(12) , for ∣S∣ ⩽ k,
where DS stands for the partial derivative operator with respect to the variables
xi for i ∈ S. In particular, I(f,∅) = ∫In f(x)dx = fk(12).

We also have the following result, which shows that the index I generalizes the
Banzhaf interaction index IB. First note that the restriction operation f ↦ f ∣{0,1}n
defines a linear bijection between the spaces Wn and Vn. The inverse map is the
so-called “multilinear extension”.

Proposition 4. For every function f ∈ Wn and every subset S ⊆ N , we haveI(f,S) = IB(f ∣{0,1}n , S).
Proof. Let f ∈ Wn of the form f(x) = ∑T⊆N a(T )∏i∈T xi and let S ⊆ N . Then,
using (11) for k = n and recalling that a(T ) = an(T ) for every T ⊆ N , we obtain

I(f,S) = ∑
T⊇S

(1
2
)∣T ∣−∣S∣ a(T ).

We then conclude by formula (3). �

Remark 1. In cooperative game theory, the set F (In) can be interpreted as the
set of fuzzy games (see for instance Aubin [2]). In this context, a fuzzy coalition is
simply an element x ∈ In and a fuzzy game f ∈ F (In) is a mapping that associates
with any fuzzy coalition its worth. It is now clear that the index I is a natural
extension of the Banzhaf interaction index to fuzzy games in L2(In) when this index
is regarded as a solution of a multilinear approximation problem.
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3. Properties and interpretations

Most of the interaction indexes defined for games, including the Banzhaf inter-
action index, share a set of fundamental properties such as linearity, symmetry, and
monotonicity (see [8]). Many of them can also be expressed as expected values of
the discrete derivatives (differences) of their arguments (see for instance (4)). In
this section we show that the index I fulfills direct generalizations of these proper-
ties to the framework of functions of L2(In). In particular, we show that I(f,S)
can be interpreted as an expected value of the difference quotient of f in the di-
rection of S or, under certain natural conditions on f , as an expected value of the
derivative of f in the direction of S.

The first result follows from the very definition of the index.

Proposition 5. For every S ⊆ N , the mapping f ↦ I(f,S) is linear and continu-
ous.

Recall that if π is a permutation on N , then, for every function f ∈ F (In), the
permutation π acts on f by π(f)(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). The following
result is then an easy consequence of the change of variables theorem.

Proposition 6. The index I is symmetric. That is, for every permutation π on
N , every f ∈ L2(In), and every S ⊆N , we have I(π(f), π(S)) = I(f,S).

We now provide an interpretation of I(f,S) as an expected value of the S-
derivative DSf of f . The proof immediately follows from repeated integrations by
parts of (10) and thus is omitted.

For S ⊆ N , denote by hS the probability density function of independent beta
distributions on I

n with parameters α = β = 2, that is, hS(x) = 6∣S∣∏i∈S xi(1 − xi).
Proposition 7. For every S ⊆N and every f ∈ L2(In) such that DT f is continuous
and integrable on ]0,1[n for all T ⊆ S, we have

(13) I(f,S) = ∫
In
hS(x)DSf(x)dx.

Remark 2. (a) Formulas (4) and (13) show a strong analogy between the in-
dexes IB and I. Indeed, IB(f,S) is the expected value of the S-difference
of f with respect to the discrete uniform distribution whereas I(f,S) is the
expected value of the S-derivative of f with respect to a beta distribution.
We will see in Theorem 10 a similar interpretation of I(f,S) which does
not require all the assumptions of Proposition 7.

(b) Propositions 3 and 7 reveal an analogy between least squares approxima-
tions and Taylor expansion formula. Indeed, while the k-degree Taylor
expansion of f at a given point a can be seen as the unique polynomial
of degree at most k whose derivatives at a coincide with the derivatives of
f at the same point, the best kth approximation of f is the unique mul-
tilinear polynomial of degree at most k that agrees with f in all average
S-derivatives for ∣S∣ ⩽ k.

We now give an alternative interpretation of I(f,S) as an expected value, which
does not require the additional assumptions of Proposition 7. In this more general
framework, we naturally replace the derivative with a difference quotient. To this
extent, we introduce some further notation. As usual, we denote by ei the ith
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vector of the standard basis of Rn. For every S ⊆N and every h ∈ In, we define the
S-shift operator ES

h on F (In) by
ES

hf(x) = f(x +∑
j∈S

hjej)
for every x ∈ In such that x + h ∈ In.

We also define the S-difference (or discrete S-derivative) operator ∆S
h on F (In)

inductively by ∆∅
h
f = f and ∆S

hf = ∆
{i}
h

∆
S∖{i}
h

f for i ∈ S, with ∆
{i}
h

f(x) =
E
{i}
h

f(x) − f(x). Similarly, we define the S-difference quotient operator QS
h on

F (In) by Q∅
h
f = f and QS

hf = Q{i}h
Q

S∖{i}
h

f for i ∈ S, with Q
{i}
h

f(x) = 1

hi
∆
{i}
h

f(x).
The next straightforward lemma provides a direct link between the difference

operators and the shift operators. It actually shows that, for every fixed h ∈ In, the
map S ↦∆S

h is nothing other than the Möbius transform of the map S ↦ ES
h .

Lemma 8. For every f ∈ F (In) and every S ⊆ N , we have

(14) ∆S
hf(x) = ∑

T⊆S

(−1)∣S∣−∣T ∣ET
h f(x).

Let us interpret the S-difference operator through a simple example. For n = 3
and S = {1,2}, we have

∆S
hf(x) = f(x1+h1, x2+h2, x3)−f(x1+h1, x2, x3)−f(x1, x2+h2, x3)+f(x1, x2, x3).

In complete analogy with the discrete concept of marginal interaction among players
in a coalition S ⊆ N (see [11, §2]), the value ∆S

hf(x) can be interpreted as the
marginal interaction among variables xi (i ∈ S) at x with respect to the increases
hi for i ∈ S.

Setting h = y − x in the example above, we obtain

∆S
y−xf(x) = f(y1, y2, x3) − f(y1, x2, x3) − f(x1, y2, x3) + f(x1, x2, x3).

If xi ⩽ yi for every i ∈ S, then ∆S
y−xf(x) is naturally called the f -volume of the

box ∏i∈S[xi, yi]. The following straightforward lemma shows that, when f = vS ,
∆S

y−xf(x) is exactly the volume of the box ∏i∈S[xi, yi].
Lemma 9. For every S ⊆N , we have ∆S

y−xvS(x) = ∏i∈S(yi − xi).
In the remaining part of this paper, the notation yS ∈ [xS ,1] means that yi ∈[xi,1] for every i ∈ S.

Theorem 10. For every f ∈ L2(In) and every S ⊆ N , we have

(15) I(f,S) = 1

µ(S) ∫x∈In ∫yS∈[xS ,1]
∆S

y−xf(x)dyS dx,

where

µ(S) = ∫
x∈In
∫
yS∈[xS,1]

∆S
y−xvS(x)dyS dx = 6−∣S∣.

Proof. Since the result is trivial if S = ∅, we can assume that S ≠ ∅. We first
observe that the value of µ(S) immediately follows from Lemma 9. Then, for any
T ⊆ N and any i ∈ T , we have

(16) ∫
1

0
∫

1

xi

ET
y−xf(x)dyi dxi = ∫

1

0

yiE
T
y−xf(x)dyi = ∫ 1

0

xiE
T∖{i}
y−x f(x)dxi,



MEASURING THE INTERACTIONS AMONG VARIABLES 9

where the first equality is obtained by permuting the integrals and the second equal-
ity by replacing the integration variable yi with xi. Moreover, we have immediately

(17) ∫
1

0
∫

1

xi

f(x)dyi dxi = ∫
1

0

(1 − xi)f(x)dxi.

Using (14) and repeated applications of (16) and (17), we finally obtain

∫
x∈In
∫
yS∈[xS ,1]

∆S
y−xf(x)dyS dx

= ∑
T⊆S

(−1)∣S∣−∣T ∣ ∫
x∈In
∫
yS∈[xS,1]

ET
y−xf(x)dyS dx

= ∑
T⊆S

(−1)∣S∣−∣T ∣ ∫
In
∏
i∈T

xi ∏
i∈S∖T

(1 − xi)f(x)dx
= ∫

In
∏
i∈S

(2xi − 1)f(x)dx = 6−∣S∣ I(f,S),
which completes the proof. �

Remark 3. (a) By Lemma 9, we see that I(f,S) can be interpreted as the
average f -volume of the box ∏i∈S[xi, yi] divided by its average volume,
when x and yS are chosen at random with the uniform distribution.

(b) As already mentioned in Remark 2(a), Theorem 10 appears as a natural
generalization of formula (4) (similarly to Proposition 7) in the sense that
the marginal interaction ∆S

hf(x) at x is averaged over the whole domain
I
n (instead of its vertices).

(c) We note a strong analogy between formula (15) and the overall importance
index defined by Grabisch and Labreuche in [9, Theorem 1]. Indeed, up to
the normalization constant, this importance index is obtained by replacing
in formula (15) the operator ∆S

y−x by ES
y−x − I. Moreover, when S is a

singleton, both operators coincide and so do the normalization constants.

As an immediate consequence of Theorem 10, we have the following interpreta-
tion of the index I as an expected value of the difference quotients of its argument
with respect to some probability distribution.

Corollary 11. For every f ∈ L2(In) and every S ⊆ N , we have

I(f,S) = ∫
x∈In
∫
yS∈[xS ,1]

pS(x,yS)QS
y−xf(x)dyS dx,

where the function pS(x,yS) = 6∣S∣∏i∈S(yi − xi) defines a probability density func-
tion on the set {(x,yS) ∶ x ∈ In,yS ∈ [xS ,1]}.

Let us now analyze the behavior of the interaction index I on some special
classes of functions. The following properties generalize in a very natural way to
our setting the behavior of the Banzhaf interaction index IB with respect to the
presence of null players and dummy coalitions.

Recall that a null player in a game (or a set function) v ∈ GN is a player i ∈ N
such that v(T ∪ {i}) = v(T ) for every T ⊆ N ∖ {i}. Equivalently, the corresponding
pseudo-Boolean function f ∶{0,1}n → R, given by (1), is independent of xi. The
notion of null player for games is then naturally extended through the notion of
ineffective variables for functions in F (In) as follows. A variable xi (i ∈ N) is said
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to be ineffective for a function f in F (In) if f(x) = E{i}−x f(x) for every x ∈ In, or
equivalently, if ∆

{i}
y−xf(x) = 0 for every x,y ∈ In.

Define If = {i ∈ N ∶ xi ineffective for f}. From either (10) or (15), we imme-
diately derive the following result, which states that any combination of variables
containing at least one ineffective variable for a function f ∈ L2(In) has necessarily
a zero interaction.

Proposition 12. For every f ∈ L2(In) and every S ⊆ N such that S ∩ If ≠ ∅, we
have I(f,S) = 0.

We say that a coalition S ⊆ N is dummy in a game (or a set function) v ∈ GN if
v(R∪T ) = v(R)+v(T )−v(∅) for every R ⊆ S and every T ⊆ N ∖S. This means that{S,N ∖S} forms a partition of N such that, for every coalition K ⊆N , the relative
worth v(K)− v(∅) is the sum of the relative worths of its intersections with S and
N ∖ S. It follows that a coalition S and its complement N ∖ S are simultaneously
dummy in any game v ∈ GN .

We propose the following extension of this concept.

Definition 13. We say that a subset S ⊆ N is dummy for a function f ∈ F (In) if
f(x) = ES

−xf(x) +EN∖S
−x f(x) − f(0) for every x ∈ In.

The following proposition gives an immediate interpretation of this definition.

Proposition 14. A subset S ⊆ N is dummy for a function f ∈ F (In) if and only
if there exist functions fS , fN∖S ∈ F (In) such that IfS ⊇ N ∖ S, IfN∖S ⊇ S and
f = fS + fN∖S.
Proof. For the necessity, just set fS(x) = EN∖S

−x f(x)−f(0) and fN∖S = f −fS. The
sufficiency can be checked directly. �

The following result expresses the natural idea that the interaction for subsets
that are properly partitioned by a dummy subset must be zero. It is an immediate
consequence of Propositions 5, 12, and 14.

Proposition 15. For every f ∈ L2(In), every nonempty subset S ⊆ N that is
dummy for f , and every subset K ⊆ N such that K ∩S /= ∅ and K ∖S /= ∅, we haveI(f,K) = 0.

Another immediate consequence of Proposition 12 is that additive functions have
zero interaction indexes for s-subsets with s ⩾ 2. This fact can be straightforwardly
extended to the class of k-additive functions as follows.

Definition 16. A function f ∈ L2(In) is said to be k-additive for some k ∈ {1, . . . , n}
if there exists a family of functions {fR ∈ L2(In) ∶ R ⊆ N, ∣R∣ ⩽ k} satisfying
IfR ⊇ N ∖R such that f = ∑R fR.

Corollary 17. Let f = ∑R fR ∈ L2(In) be a k-additive function and let S ⊆ N . We
have I(f,S) = 0 if ∣S∣ > k and I(f,S) = I(fS , S) if ∣S∣ = k.

Let us now introduce the concept of S-increasing monotonicity by refining the
classical concept of n-increasing monotonicity for functions of n variables (see for
instance [20, p. 43]).

Definition 18. Let S ⊆ N . We say that a function f ∈ F (In) is S-increasing if
∆S

y−xf(x) ⩾ 0 for all x,y ∈ In such that x ⩽ y.
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The following result then follows immediately from Theorem 10.

Proposition 19. If f ∈ L2(In) is S-increasing for some S ⊆ N , then I(f,S) ⩾ 0.
We end this section by analyzing the behavior of the index I with respect to

dualization, which is a standard concept for instance in aggregation function theory
(see [10, p. 48]). The dual of a function f ∈ F (In) is the function fd ∈ F (In) defined
by fd(x) = 1− f(1N −x). A function f ∈ F (In) is said to be self-dual if fd = f . By
using the change of variables theorem, we immediately derive the following result.

Proposition 20. For every f ∈ L2(In) and every nonempty S ⊆ N , we haveI(fd, S) = (−1)∣S∣+1I(f,S). Moreover, I(fd,∅) = 1 − I(f,∅). In particular, if
f is self-dual, then I(f,∅) = 1/2 and I(f,S) = 0 whenever ∣S∣ is even.

Remark 4. Given f ∈ L2(In), we define the self-dual and anti-self-dual parts of f
by f s = (f + fd)/2 and fa = (f − fd)/2, respectively. It follows from Proposition 20
that, for every nonempty S ⊆ N , we have I(f,S) = I(fa, S) if ∣S∣ is even, andI(f,S) = I(f s, S) if ∣S∣ is odd.

4. Applications to aggregation function theory

When we need to summarize, fuse, or merge a set of values into a single one,
we usually make use of a so-called aggregation function, e.g., a mean or an aver-
aging function. Various aggregation functions have been proposed thus far in the
literature, thus giving rise to the growing theory of aggregation which proposes,
analyzes, and characterizes aggregation function classes. For recent references, see
Beliakov et al. [4] and Grabisch et al. [10].

In this context it is often useful to analyze the general behavior of a given aggre-
gation function f with respect its variables. The index I then offers a good solution
to the problems of (i) determining which variables have the greatest influence over
f and (ii) measuring how the variables interact within f .

In this section we first compute explicit expressions of the interaction index for
the discrete Choquet integral, a noteworthy aggregation function which has been
widely investigated due to its many applications for instance in decision making (see
for instance [12]). Then we proceed similarly for the class of pseudo-multilinear
polynomials, which includes the multiplicative functions and, in particular, the
weighted geometric means. Finally, we introduce a normalized version of the index
to compare interactions from different functions and compute the coefficient of
determination of the multilinear approximations.

4.1. Discrete Choquet integrals. A discrete Choquet integral is a function f ∈
F (In) of the form

(18) f(x) = ∑
T⊆N

a(T ) min
i∈T

xi,

where the set function a∶2N → R is nondecreasing with respect to set inclusion and
such that a(∅) = 0 and ∑S⊆N a(S) = 1.2 For general background, see for instance
[10, Section 5.4].

2Whether the conditions on the set function a are assumed or not, the function given in (18)
is also called the Lovász extension of the pseudo-Boolean function f ∣{0,1}n .
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The following proposition yields an explicit expression of the interaction index
for the class of discrete Choquet integrals. We first consider a lemma and recall
that the beta function is defined, for any integers p, q > 0, by

B(p, q) = ∫ 1

0

tp−1(1 − t)q−1 dt = (p − 1)!(q − 1)!(p + q − 1)! .

Lemma 21. We have

∫
[0,1]n

min
i∈T

xi∏
i∈S

(xi −
1

2
)dx = ⎧⎪⎪⎨⎪⎪⎩

2−∣S∣B(∣S∣ + 1, ∣T ∣ + 1), if S ⊆ T ,
0, otherwise.

Proof. The result is trivial if S ⊈ T . Thus, we assume that S ⊆ T . Assume also
without loss of generality that T ≠ ∅.

For distinct real numbers x1, . . . , xn, we have

min
i∈T

xi = ∑
j∈T

xj ∏
i∈T∖{j}

H(xi − xj),
where H ∶R → R is the Heaviside step function (H(x) = 1 if x ⩾ 0 and 0 otherwise).

Therefore, we have

∫
[0,1]n

min
i∈T

xi∏
i∈S

(xi −
1

2
) dx = ∫

[0,1]∣T ∣
min
i∈T

xi∏
i∈S

(xi −
1

2
)∏

i∈T

dxi

= ∑
j∈T
∫

1

0

(∫
[xj ,1]∣T ∣−1

∏
i∈S

(xi −
1

2
) ∏
i∈T∖{j}

dxi)xj dxj

= ∑
j∈S
∫

1

0

(xj −
1

2
)(xj(1 − xj)

2
)∣S∣−1(1 − xj)∣T ∣−∣S∣xj dxj

+ ∑
j∈T∖S

∫
1

0

(xj(1 − xj)
2

)∣S∣(1 − xj)∣T ∣−∣S∣−1 xj dxj

= −2−∣S∣ ∫
1

0

xj

d

dxj

((1 − xj)∣T ∣x∣S∣j ) dxj .

We then conclude by calculating this latter integral by parts. �

Proposition 22. If f ∈ F (In) is of the form (18), then we have

I(f,S) = 6∣S∣ ∑
T⊇S

a(T )B(∣S∣ + 1, ∣T ∣ + 1).
Remark 5. The map a ↦ I(f,S) = 6∣S∣∑T⊇S a(T )B(∣S∣ + 1, ∣T ∣ + 1) defines an
interaction index, in the sense of [8], that is not a probabilistic index (see [8, Sec-
tion 3.3]). However, if we normalize this interaction index (with respect to ∣S∣) to

get a probabilistic index, we actually divide I(f,S) by 6∣S∣B(∣S∣ + 1, ∣S∣ + 1) and
retrieve the index IM defined in [19].

4.2. Pseudo-multilinear polynomials. We now derive an explicit expression of
the index I for the class of pseudo-multilinear polynomials, that is, the class of
multilinear polynomials with transformed variables.

Definition 23. We say that a function f ∈ L2(In) is a pseudo-multilinear poly-
nomial if there exists a multilinear polynomial g ∈ F (Rn) and n unary func-
tions ϕ1, . . . , ϕn ∈ L2(I) such that f(x) = g(ϕ1(x1), . . . , ϕn(xn)) for every x =(x1, . . . , xn) ∈ In.
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Using expression (5) of multilinear polynomials, we immediately see that any
pseudo-multilinear polynomial f ∈ L2(In) can be written in the form

f(x) = ∑
T⊆N

a(T )∏
i∈T

ϕi(xi).
The following result yields an explicit expression of the interaction index for this

function in terms of the interaction indexes for the unary functions ϕ1, . . . , ϕn.

Proposition 24. For every pseudo-multilinear polynomial f ∈ L2(In) and every
S ⊆ N , we have

I(f,S) = ∑
T⊇S

a(T ) ∏
i∈T∖S

I(ϕi,∅)∏
i∈S

I(ϕi,{i}).
Proof. By linearity of I, we only have to compute I(∏i∈T ϕi, S). It is zero if
S /⊆ T by Proposition 12. If S ⊆ T , we simply use (10) and compute the integrals
separately. �

Remark 6. Proposition 24 can actually be easily extended to functions of the form

f(x) = ∑
T⊆N

a(T )∏
i∈T

ϕT
i (xi),

where ϕT
i ∈ L2(I) for i = 1, . . . , n and T ⊆ N .

An interesting subclass of pseudo-multilinear polynomials is the class of mul-
tiplicative functions, that is, functions of the form f(x) = ∏n

i=1 ϕi(xi), where
ϕ1, . . . , ϕn ∈ L2(I). For every multiplicative function f ∈ L2(In) and every S ⊆ N ,
assuming I(f,∅) /= 0, the ratio I(f,S)/I(f,∅) is also multiplicative in the sense
that

(19)
I(f,S)
I(f,∅) =∏i∈S

I(ϕi,{i})I(ϕi,∅) .

Combining this with (12) and the identity ∑T⊆N ∏i∈T zi = ∏i∈N(1 + zi), we can
write the best nth approximation of f as

fn(x) = I(f,∅) ∏
i∈N

(1 + I(ϕi,{i})I(ϕi,∅) (xi −
1

2
)).

4.3. Normalized index and coefficients of determination. Just as for inter-
action indexes introduced in game theory [13] and the importance index defined by
Grabisch and Labreuche [9], the interaction index I is a linear map. This implies
that it cannot be considered as an absolute interaction index but rather as a relative
index constructed to assess and compare interactions for a given function.

If we want to compare interactions for different functions, we need to consider
an absolute (normalized) interaction index. Such an index is actually easy to define
if we use the following probabilistic viewpoint: considering the unit cube I

n as a
probability space with respect to the Lebesgue measure, we see that, for a nonempty
subset S ⊆ N , the index I(f,S) is actually the covariance of the random variables f

and 12∣S∣/2wS . It is then natural to consider the Pearson (or correlation) coefficient
instead of the covariance.

Definition 25. The normalized interaction index is the mapping

r∶{f ∈ L2(In) ∶ σ(f) ≠ 0} × (2N ∖ {∅})→ R
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defined by

r(f,S) = I(f,S)
12∣S∣/2 σ(f) = ⟨

f −E(f)
σ(f) ,wS⟩ ,

where E(f) and σ(f) are the expectation and the standard deviation of f , respec-
tively, when f is regarded as a random variable.

From this definition it follows that −1 ⩽ r(f,S) ⩽ 1. Moreover, this index remains
unchanged under interval scale transformations, that is, r(af + b,S) = r(f,S) for
all a > 0 and b ∈ R. Note also that the normalized indexes for a function f ∈ L2(In)
and its dual fd are linked by r(fd, S) = (−1)∣S∣+1 r(f,S), where S ≠ ∅.

Let us examine on a few examples the behavior of the normalized importance
index r(f,{i}) of a variable xi:

● For the arithmetic mean f(x) = 1

n ∑n
i=1 xi, we have σ(f) = (12n)1/2, I(f,{i}) =

1/n for all i ∈ N , and hence r(f,{i}) = 1/√n.
● For the minimum function f(x) =mini∈N xi, we have

σ(f) =
√
n

(n + 1)√n + 2
(see [19, Lemma 6]). By Proposition 22, we then have

r(f,{i}) =
√
3√

n(n + 2)
for every i ∈ N . By duality, the same result holds for the maximum function
fd(x) = maxi∈N xi. From this fact, we measure the intuitive fact that the
overall importance of a given variable is greater in the arithmetic mean
than in the minimum and the maximum functions.
● Consider the weighted geometric mean f(x) = ∏n

i=1 x
ci
i , where c1, . . . , cn ⩾ 0

and ∑n
i=1 ci = 1. Using (19), for every nonempty subset S ⊆ N , we have

I(f,S) = ∏
i∈N

1

ci + 1
∏
i∈S

6ci
ci + 2

.

In the special case of the symmetric geometric mean function, we have

r(f,{i}) =
√
3

2n + 1
(( (n + 1)2

n(n + 2))
n

− 1)−1/2.
Here again, we can show that the importance of variables in the arithmetic
mean is greater than the importance of variables in the geometric mean
function.

The normalized index is also useful to compute the coefficient of determination
of the best kth approximation of f .3 Assuming that σ(f) ≠ 0, this coefficient is
given by

R2

k(f) = σ2(fk)
σ2(f) .

Since E(fk) = I(fk,∅) = I(f,∅) = E(f) (see Proposition 3), by (8), we obtain

σ2(fk) = ∥fk −E(fk)∥2 = ∥ ∑
T⊆N

1⩽∣T ∣⩽k

⟨f,wT ⟩wT ∥
2

= ∑
T⊆N

1⩽∣T ∣⩽k

⟨f,wT ⟩2

3This coefficient actually measures the goodness of fit of the multilinear model.
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and hence

(20) R2

k(f) = ∑
T⊆N

1⩽∣T ∣⩽k

r(f,T )2.

Remark 7. The coefficient of determination explains why the normalized impor-
tance of each variable in the arithmetic mean is greater than that in the minimum
function, the maximum function, and the geometric mean function. Indeed, if f
is a symmetric function, then r(f,{i}) = r(f,{j}) for every i, j ∈ N and, since
R2

1(f) ⩽ 1, by (20) we have r(f,{i}) ⩽ 1/√n.
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