Skip to main content

Noise Influance Reduction in Estimation of CBF, CBV and MTT, MRI Perfusion Parameters

  • Conference paper
Image Processing and Communications Challenges 2

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 84))

  • 1119 Accesses

Summary

In this article we present our research into the subject of reducing the influence of noise on evaluation of perfusion parameters, such as CBF, CBV or MTT. Noise can be present on some pixels of study slices, therefore it can lead to artifacts in calculated concentration time curves and blur the final results.

To minimize influence from these factors we propose method that is different from commonly used. Generally noise reduction is done by filtering (smoothing, blurring), which is not always producing good results, as many information from image is lost. Therefore more effective is using the interpolation methods.

We have studied different interpolation techniques and compared them numerically. Tests have proven that using our method leads to better, more accurate estimation of perfusion parameters. It also seems that large window Sinc interpolation gives the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Edelman, R.R., Siewert, B., Darby, D.G., Thagaraj, V., Nobre, A.C., Mesulam, M.M.: Qualitive Mapping of cerebral blood-flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio-frequency. Radiology 192, 513–520 (1994)

    Google Scholar 

  2. Mihara, F., Kuwabara, Y., Tanaka, A., et al.: Reliability of mean transit time obtained using perfusion weighted MR imaging: comparision with positron emission tomography. Magn. Reson Imaging 20, 33–39 (2003)

    Article  Google Scholar 

  3. Restrepo, L., Wityk, R.J., Grega, M., et al.: Diffusion and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery. In: Stroke 2002, vol. 33, pp. 2909–2915 (2002)

    Google Scholar 

  4. Boxerman, J.L., Rosen, B.R., Weisskoff, R.M.: Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J. Magn. Reson. Imag. 7, 528–537 (1997)

    Article  Google Scholar 

  5. Kaneko, K., Kuwabara, Y., Mihara, F., et al.: Validation of the CBF, CBV, and MTT values by perfusion MRI in chronic occlusive cerebrovascular disease: a comparision with OPET. Academic Radiology 11(5), 489–497 (2004)

    Article  Google Scholar 

  6. Wirestam, R., Anderson, L., Ostergaard, L., et al.: Assessment of regional blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn. Reson. Med. 43, 691–700 (2000)

    Article  Google Scholar 

  7. Ostergaard, L., Weiskoff, R.M., Chester, D.A., et al.: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages Part I: Mathematical approach and statistical analysis. Magn. Reson. Med. 36, 715–736 (1996)

    Article  Google Scholar 

  8. Bereczki, D., Wei, L., Otsuka, T., et al.: Hypercapnia slightly rises blood volume and sizably elevates flow velocity in brain microvessels. M. J. Physiol. 264, H1360-H1369 (1994)

    Google Scholar 

  9. Lehmann, T.M., Gönner, C., Spitzer, K.: Survey: Interpolation Methods in Medical Image Processing. IEEE Transactions on medical imaging 18(11) (1999)

    Google Scholar 

  10. Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparision of interpolating methods for image resampling. IEEE Trans. Med. Imag. MI-2, 31–39 (1983)

    Article  Google Scholar 

  11. Beauchamp, K.G.: Signal Processing. George & Allen Unwin Ltd (1973)

    Google Scholar 

  12. Danielsson, P.E., Hammerin, M.: High accuracy rotation of images. Computer Vision, Graphics and Image Processing 54(4), 340–344 (1992)

    Google Scholar 

  13. Catmull, E., Rom, R.: A class of local interpolating splines. In: Barnhill, R.E., Riesenfeld, R.F. (eds.) Computer Aided Geometric Design, pp. 317–326. Academic Press, New York (1974)

    Google Scholar 

  14. Meijering, E.H.W.: Spline interpolation in medical imaging: comparison with other convolution-based approaches. In: Signal Processing X: Theories and Applications - Proceedings of EUSIPCO 2000, vol. IV, pp. 1989–1996 (2000)

    Google Scholar 

  15. Wolberg, G.: Digital Image Warping. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  16. Lanczos, C.: Discourse on Fourier Series. Oliver & Boyd, London (1966)

    MATH  Google Scholar 

  17. Thacker, N.A., Jackson, A., Moriarty, D., Vokurka, B.: Renormalised Sinc Interpolation, University of Manchester, Tina Memo No. 1999–005 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kartaszyński, R.H., Mikołajczak, P. (2010). Noise Influance Reduction in Estimation of CBF, CBV and MTT, MRI Perfusion Parameters. In: Choraś, R.S. (eds) Image Processing and Communications Challenges 2. Advances in Intelligent and Soft Computing, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16295-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16295-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16294-7

  • Online ISBN: 978-3-642-16295-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics