Skip to main content

A Dependency Pair Framework for A ∨ C-Termination

  • Conference paper
Rewriting Logic and Its Applications (WRLA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6381))

Included in the following conference series:

Abstract

The development of powerful techniques for proving termination of rewriting modulo a set of equations is essential when dealing with rewriting logic-based programming languages like CafeOBJ, Maude, OBJ, etc. One of the most important techniques for proving termination over a wide range of variants of rewriting (strategies) is the dependency pair approach. Several works have tried to adapt it to rewriting modulo associative and commutative (AC) equational theories, and even to more general theories. However, as we discuss in this paper, no appropriate notion of minimality (and minimal chain of dependency pairs) which is well-suited to develop a dependency pair framework has been proposed to date. In this paper we carefully analyze the structure of infinite rewrite sequences for rewrite theories whose equational part is a (free) combination of associative and commutative axioms which we call A ∨ C-rewrite theories. Our analysis leads to a more accurate and optimized notion of dependency pairs through the new notion of stably minimal term. Then, we have developed a suitable dependency pair framework for proving termination of A ∨ C-rewrite theories.

Partially supported by EU (FEDER) and MICINN grant TIN 2007-68093-C02-02. José Meseguer has been partially supported by NSF Grants CCF-0905584, CNS-07-16038, and CNS-08-34709. Beatriz Alarcón was partially supported by the Spanish MEC/MICINN under FPU grant AP2005-3399.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236(1-2), 133–178 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alarcón, B., Gutiérrez, R., Iborra, J., Lucas, S.: Proving Termination of Context-Sensitive Rewriting with MU-TERM. Electronic Notes in Theoretical Computer Science 188, 105–115 (2007)

    Article  MATH  Google Scholar 

  3. Durán, F., Lucas, S., Meseguer, J.: Termination Modulo Combinations of Equational Theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 246–262. Springer, Heidelberg (2009)

    Google Scholar 

  4. Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving Operational Termination of Membership Equational Programs. Higher-Order and Symbolic Computation 21(1-2), 59–88 (2008)

    Article  MATH  Google Scholar 

  5. Giesl, J., Kapur, D.: Dependency Pairs for Equational Rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–108. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Dependency Pairs. Journal of Automatic Reasoning 37(3), 155–203 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hirokawa, N., Middeldorp, A.: Dependency Pairs Revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Hirokawa, N., Middeldorp, A.: Automating the Dependency Pair Method. Information and Computation 199, 172–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kusakari, K.: Termination, AC-Termination and Dependency Pairs of Term Rewriting Systems. PhD. Thesis, School of Information Science, JAIST (2000)

    Google Scholar 

  10. Kusakari, K., Nakamura, M., Toyama, Y.: Elimination Transformations for Associative-Commutative Rewriting Systems. Journal of Automated Reasoning 37, 205–229 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Kusakari, K., Toyama, Y.: On Proving AC-Termination by AC-Dependency Pairs. IEICE Transactions on Information and Systems, E84-D, 604–612 (2001)

    Google Scholar 

  12. Lucas, S., Meseguer, J.: Operational Termination of Membership Equational Programs: the Order-Sorted Way. Electronic Notes in Theoretical Computer Science 238(3), 207–225 (2009)

    Article  MATH  Google Scholar 

  13. Marché, C., Urbain, X.: Termination of associative-commutative rewriting by dependency pairs. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 241–255. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Marché, C., Urbain, X.: Modular and incremental proofs of AC-termination. Journal of Symbolic Computation 38, 873–897 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peterson, G.E., Stickel, M.E.: Complete Sets of Reductions for Some Equational Theories. Journal of the ACM 28(2), 233–264 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alarcón, B., Lucas, S., Meseguer, J. (2010). A Dependency Pair Framework for A ∨ C-Termination. In: Ölveczky, P.C. (eds) Rewriting Logic and Its Applications. WRLA 2010. Lecture Notes in Computer Science, vol 6381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16310-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16310-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16309-8

  • Online ISBN: 978-3-642-16310-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics