Abstract
Several IR tasks rely, to achieve high efficiency, on a single pervasive data structure called the inverted index. This is a mapping from the terms in a text collection to the documents where they appear, plus some supplementary data. Different orderings in the list of documents associated to a term, and different supplementary data, fit widely different IR tasks. Index designers have to choose the right order for one such task, rendering the index difficult to use for others.
In this paper we introduce a general technique, based on wavelet trees, to maintain a single data structure that offers the combined functionality of two independent orderings for an inverted index, with competitive efficiency and within the space of one compressed inverted index. We show in particular that the technique allows combining an ordering by decreasing term frequency (useful for ranked document retrieval) with an ordering by increasing document identifier (useful for phrase and Boolean queries). We show that we can support not only the primitives required by the different search paradigms (e.g., in order to implement any intersection algorithm on top of our data structure), but also that the data structure offers novel ways of carrying out many operations of interest, including space-free treatment of stemming and hierarchical documents.
Funded in part by Fondecyt Grant 1-080019, Chile (first author) and by the Australian Research Council (second author).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anh, V., de Kretser, O., Moffat, A.: Vector-space ranking with effective early termination. In: Proc. 24th SIGIR, pp. 35–42 (2001)
Anh, V., Moffat, A.: Inverted index compression using word-aligned binary codes. Inf. Retr. 8(1), 151–166 (2005)
Anh, V., Moffat, A.: Pruned query evaluation using pre-computed impacts. In: Proc. 29th SIGIR, pp. 372–379 (2006)
Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 400–408. Springer, Heidelberg (2004)
Baeza-Yates, R., Moffat, A., Navarro, G.: Searching Large Text Collections, pp. 195–244. Kluwer Academic, Dordrecht (2002)
Baeza-Yates, R., Ribeiro, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)
Baeza-Yates, R., Salinger, A.: Experimental analysis of a fast intersection algorithm for sorted sequences. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 13–24. Springer, Heidelberg (2005)
Barbay, J., Kenyon, C.: Adaptive intersection and t-threshold problems. In: Proc. 13th SODA, pp. 390–399 (2002)
Barbay, J., López-Ortiz, A., Lu, T., Salinger, A.: An experimental investigation of set intersection algorithms for text searching. ACM J. Exp. Alg. 14, article 7 (2009)
Brisaboa, N., Fariña, A., Navarro, G., Esteller, M.: S,C-dense coding: an optimized compression code for natural language text databases. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857, pp. 122–136. Springer, Heidelberg (2003)
Buettcher, S., Clarke, C., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. MIT Press, Cambridge (2010)
Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice. Pearson Education, London (2009)
Culpepper, J.S., Moffat, A.: Compact set representation for information retrieval. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 137–148. Springer, Heidelberg (2007)
Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k ranked document search in general text databases. In: Proc. 18th ESA (2010) (to appear)
Demaine, E., Munro, I.: Adaptive set intersections, unions, and differences. In: Proc. 11th SODA, pp. 743–752 (2000)
Gagie, T., Puglisi, S., Turpin, A.: Range quantile queries: Another virtue of wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 1–6. Springer, Heidelberg (2009)
Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In: Proc. 14th SODA, pp. 841–850 (2003)
Gupta, A.: Succinct Data Structures. PhD thesis, Duke University, USA (2007)
Heaps, H.: Information Retrieval - Computational and Theoretical Aspects. Academic Press, London (1978)
Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string retrieval problems. In: Proc. 50th IEEE FOCS, pp. 713–722 (2009)
Hull, D.A.: Stemming algorithms: A case study for detailed evaluation. J. Amer. Soc. Inf. Sci. 47(1), 70–84 (1996)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1), article 2 (2007)
Navarro, G., Moura, E., Neubert, M., Ziviani, N., Baeza-Yates, R.: Adding compression to block addressing inverted indexes. Inf. Retr. 3(1), 49–77 (2000)
Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrieval with frequency-sorted indexes. J. Amer. Soc. Inf. Sci. 47(10), 749–764 (1996)
Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–242 (2002)
Sanders, P., Transier, F.: Intersection in integer inverted indices. In: Proc. 9th ALENEX (2007)
Sanders, P., Transier, F.: Compressed inverted indexes for in-memory search engines. In: Proc. 10th ALENEX, pp. 3–12 (2008)
Scholer, F., Williams, H., Yiannis, J., Zobel, J.: Compression of inverted indexes for fast query evaluation. In: Proc. 25th SIGIR, pp. 222–229 (2002)
Strohman, T., Croft, B.: Efficient document retrieval in main memory. In: Proc. 30th SIGIR, pp. 175–182 (2007)
Witten, I., Moffat, A., Bell, T.: Managing Gigabytes, 2nd edn. Morgan Kaufmann, San Francisco (1999)
Xu, J., Croft, W.B.: Corpus-based stemming using cooccurrence of word variants. ACM Trans. Inf. Sys. 16(1), 61–81 (1998)
Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized document ordering. In: Proc. 18th WWW, pp. 401–410 (2009)
Zipf, G.: Human Behaviour and the Principle of Least Effort. Addison-Wesley, Reading (1949)
Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comp. Surv. 38(2), article 6 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Navarro, G., Puglisi, S.J. (2010). Dual-Sorted Inverted Lists. In: Chavez, E., Lonardi, S. (eds) String Processing and Information Retrieval. SPIRE 2010. Lecture Notes in Computer Science, vol 6393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16321-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-16321-0_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16320-3
Online ISBN: 978-3-642-16321-0
eBook Packages: Computer ScienceComputer Science (R0)