
ar
X

iv
:1

00
5.

46
52

v2
 [

cs
.D

S]
 2

4
Ju

n
20

10

Succinct Representations of Dynamic Strings

Meng He and J. Ian Munro

Cheriton School of Computer Science, University of Waterloo, Canada,
{mhe, imunro}@uwaterloo.ca

Abstract. The rank and select operations over a string of length n

from an alphabet of size σ have been used widely in the design of
succinct data structures. In many applications, the string itself must
be maintained dynamically, allowing characters of the string to be in-
serted and deleted. Under the word RAM model with word size w =
Ω(lg n), we design a succinct representation of dynamic strings using
nH0+o(n) · lg σ+O(w) bits to support rank, select, insert and delete

in O(lg n

lg lg n
(lgσ

lg lgn
+1)) time1. When the alphabet size is small, i.e. when

σ = O(polylog(n)), including the case in which the string is a bit vector,
these operations are supported in O(lgn

lg lg n
) time. Our data structures are

more efficient than previous results on the same problem, and we have
applied them to improve results on the design and construction of space-
efficient text indexes.

1 Introduction

Succinct data structures provide solutions to reduce the storage cost of mod-
ern applications that process large data sets, such as web search engines, ge-
ographic information systems, and bioinformatics applications. First proposed
by Jacobson [1], the aim is to encode a data structure using space close to the
information-theoretic lower bound, while supporting efficient navigation oper-
ations in them. This approach was successfully applied to many abstract data
types, including bit vectors [1–3], strings [4–6], binary relations [7, 5], (unlabeled
and labeled) trees [1, 8–10, 7, 5, 11], graphs [1, 8, 12] and text indexes [4, 13, 6].

A basic building block for most succinct data structures is the pair of oper-
ations rank and select. In particular, we require a highly space-efficient repre-
sentation of a string S of length n over an alphabet of size σ to support the fast
evaluation of:

– access(S, i), which returns the character at position i in the string S;
– rankα(S, i), which returns the number of occurrences of character α in S[1..i];
– selectα(S, i), which returns the position of the ith occurrence of character

α in the string S.

This problem has many applications such as designing space-efficient text in-
dexes [4, 6], as well as representing binary relations [7, 5], labeled trees [10, 7,

1 lg n denotes log2 n.

1

http://arxiv.org/abs/1005.4652v2

5] and labeled graphs [12]. The case in which the string is a bit vector whose
characters are 0’s and 1’s (i.e. σ = 2) is even more fundamental: A bit vector
supporting rank and select is a key structure used in several approaches of
representing strings succinctly [4, 7, 5, 14], and it is also used in perhaps most
succinct data structures [1, 8–10, 7, 5, 12].

Due to the importance of strings and bit vectors, researchers have designed
various succinct data structures for them [1, 3–6] and achieved good results. For
example, the data structure of Raman et al. [3] can encode a bit vector using
nH0+o(n) bits, where H0 is the zero-order entropy of the bit vector2, to support
access, rank and select operations in constant time. Another data structure
called wavelet tree proposed by Grossi et al. [4] can represent a string using
nH0 + o(n) · lg σ bits to support access, rank and select in O(lg σ) time.

However, in many applications, it is not enough to have succinct static data
structures that allow data to be retrieved efficiently, because data in these appli-
cations are also updated frequently. For example, when designing a succinct text
index to support fast string search in a collection of text documents, it might be
necessary to allow documents to be inserted into or deleted from the collection.
Thus it is necessary to study succinct dynamic data structures that not only
support efficient retrieval operations, but also support efficient update opera-
tions. In the case of strings and bit vectors, the following two update operations
are desired in many applications in addition to access, rank and select:

– insertα(S, i), which inserts character α between S[i− 1] and S[i];
– delete(S, i), which deletes S[i] from S.

In this paper, we design succinct representations of dynamic strings and bit
vectors that are more efficient than previous results. We also present several
applications to show how advancements on these fundamental problems yield
improvements on other data structures.

1.1 Related Work

Blandford and Blelloch [15] considered the problem of representing ordered lists
succinctly, and their result can be used to represent a dynamic bit vector of
length n using O(nH0) bits to support the operations defined in Section 1 in
O(lg n) time (note that H0 ≤ 1 holds for a bit vector). A different approach
proposed by Chan et al. [13] can encode dynamic bit vectors using O(n) bits to
provide the same support for operations. Later Chan et al. [16] improved this
result by providing O(lg n/ lg lg n)-time support for all these operations while
still using O(n) bits of space. Mäkinen and Navarro [14] reduced the space cost
to nH0 + o(n) bits, but their data structure requires O(lg n) time to support
operations. Recently, Sadakane and Navarro [11] designed a data structure for

2 The zero-order (empirical) entropy of a string of length n over an alphabet of size
σ is defined as H0 =

∑σ

i=1
(ni

n
lg n

ni
), where ni is the number of times that the ith

character occurs in the string. Note that we always have H0 ≤ lg σ. This definition
also applies to a bit vector, for which σ = 2.

2

dynamic trees, and their main structure is essentially a bit vector that supports
more types of operations. Their result can be used to represent a bit vector using
n+ o(n) bits to support the operations we consider in O(lg n/ lg lgn) time.

For the more general problem of representing dynamic strings of length n over
alphabets of size σ, Mäkinen and Navarro [14] combined their results on bit vec-
tors with the wavelet tree structure of Grossi et al. [4] to design a data structure
of nH0+o(n) · lg σ bits that supports access, rank and select in O(lg n logq σ)

time, and insert and delete in O(q lg n logq σ) time for any q = o(
√
lg n). Lee

and Park [17] proposed another data structure of n lg σ + o(n) · lg σ to support
access, rank and select in O(lg n(lg σ

lg lgn + 1)) worst-case time which is faster,

but insert and delete take O(lg n(lg σ
lg lgn+1)) amortized time. Finally, González

and Navarro [6] improved the above two results by designing a structure of nH0+
o(n) · lg σ bits to support all the operations in O(lg n(lg σ

lg lgn +1)) worst-case time.

Another interesting data structure is that of Gupta et al. [18]. For the same
problems, they aimed at improving query time while sacrificing update time.
Their bit vector structure occupies nH0 + o(n) bits and requires O(lg lg n) time
to support access, rank and select. It takesO(lgǫ n) amortized time to support
insert and delete for any constant 0 < ǫ < 1. Their dynamic string structure
uses n lg σ + lg σ(o(n) + O(1)) bits to provide the same support for operations
(when σ = O(polylog(n)), access, rank and select take O(1) time).

1.2 Our Results

We adopt the word RAM model with word size w = Ω(lg n). Our main result is
a succinct data structure that encodes a string of length n over an alphabet of
size σ in nH0+ o(n) · lg σ+O(w) bits to support access, rank, select, insert
and delete in O(lgn

lg lgn (
lg σ

lg lgn + 1)) time. When σ = O(polylog(n)), all these

operations can be supported in O(lg n
lg lg n) time. Note that the O(w) term in the

space cost exists in all previous results, and we omit them in Section 1.1 and
Table 1 for simplicity of presentation (in fact many papers simply ignore them).
Our structure can also encode a bit vector of length n in nH0+o(n)+O(w) bits to
support the same operations in O(lgn

lg lgn) time, matching the lower bound in [19].
Table 1 in Appendix A compares these results with previous results, from which
we can see that our solutions are currently the best to the problem, for both the
general case and the special case in which the alphabet size is O(polylog(n)) or
2 (i.e. the string is a bit vector). The only previous result that is not comparable
is that of Gupta et al. [18], since their solution is designed under the assumption
that the string is queried frequently but updated infrequently.

We also apply the above results to design a succinct text index for a dynamic
text collection to support text search, and the problem of reducing the required
amount of working space when constructing a text index. Our dynamic string
representation allows us to improve previous results on these problems [14, 6].

3

2 Preliminaries

Searchable Partial Sums. Raman et al. [20] considered the problem of repre-
senting a dynamic sequence of integers to support sum, search and update

operations. To achieve their main result, they designed a data structure for the
following special case in which the length of the sequence is small:

Lemma 1. There is a data structure that can store a sequence, Q, of O(lgǫ n)
nonnegative integers of O(lg n) bits each3, for any constant 0 ≤ ǫ < 1, using
O(lg1+ǫ n) bits to support the following operations in O(1) time:

– sum(Q, i), which computes
∑i

j=1 Q[j];
– search(Q, x), which returns the smallest i such that sum(Q, i) ≥ x;
– update(Q, i, δ), which updates Q[i] to Q[i] + δ, where |δ| ≤ lg n.

The data structure requires a precomputed universal table of size O(nǫ′) bits for
any fixed ǫ′ > 0. The structure can be constructed in O(lgǫ n) time except the
precomputed table.

We will use this lemma to encode information stored as small sequences of
integers in our data structures.

Collections of Searchable Partial Sums. A key structure in the dynamic string
representation of González and Navarro [6] is a data structure that maintains a
set of sequences of nonnegative integers, such that sum, search and update can
be supported on any sequence efficiently, while insert and delete operations
are performed simultaneously on all the sequences at the same given position,
with the restriction that only 0’s can be inserted or deleted. More precisely, let
C = Q1, Q2, · · · , Qd to be a set of dynamic sequences, and each sequence, Qj ,
has n nonnegative integers of k = O(lg n) bits each. The collection of searchable
partial sums with insertions and deletions (CSPSI) problem is to encode C to
support the following operations:

– sum(C, j, i), which computes
∑i

p=1 Qj[p];
– search(C, j, x), which returns the smallest i such that sum(C, j, i) ≥ x;
– update(C, j, i, δ), which updates Qj[i] to Qj [i] + δ;
– insert(C, i), which inserts 0 between Qj[i− 1] and Qj [i] for all 1 ≤ j ≤ d;
– delete(C, i), which deletes Qj[i] from sequence Qj for all 1 ≤ j ≤ d, and to

perform this operation, Qj[i] = 0 must hold for all 1 ≤ j ≤ d.

González and Navarro [6] designed a data structure of kdn(1 +O(1√
lgn

+ d
lgn))

bits to support all the above operations in O(d + lgn) time. This structure
becomes succinct (i.e. using dk(n+o(n)) bits if d = o(lg n), when the operations
can be supported in O(lg n) time. A careful reading of their technique shows that
these results only work under the word RAM model with word size w = Θ(lg n)
(see our discussions after Lemma 5). We improve this data structure for small
d, which is further used to design our succinct string representations.

3 Raman et al. [20] required each integer to fit in one word. However, it is easy to
verify that their proof is still correct if each integer requires O(lg n) bits, i.e. each
integer can require up to a constant number of words to store.

4

3 Collections of Searchable Partial Sums

We follow the main steps of the approach of González and Navarro [6] to design
a succinct representation of dynamic strings, but we make improvements upon
the data structures designed in each step. We first improve their result to design
a data structure for the collection of searchable partial sums with insertions
and deletions problem (Section 3), and then combine it with other techniques
to improve their data structure for strings over small alphabets (Section 4).
Finally, we extend the result on small alphabets to general alphabets using the
structure of multi-ary wavelet trees (Section 5). Our main strategy of achieving
these improvements is to divide the sequences into superblocks of appropriate
size, and store them in the leaves of a B-tree (instead of the red-black tree in [6]).
Similar ideas were applied to data structures for balanced parentheses [16, 11].
Our work is the first that successfully adapts it to integer sequences and character
strings, and we have created new techniques to overcome some difficulties.

In this section, we consider the CSPSI problem defined in section 2. We
assume that d = O(lgη n) for any constant 0 < η < 1, and for the operation
update(C, j, i, δ), we assume |δ| ≤ lg n. Under these assumptions, we improve
the result in [6] under the word RAM model with word size Ω(lg n).

Data Structures. Our main data structure is a B-tree constructed over the given

collection C. Let L = ⌈ ⌈lg n⌉2
lg⌈lgn⌉⌉. Each leaf of this B-tree stores a superblock whose

size is between (and including) L/2 and 2L bits, and each superblock stores the
same number of integers from each sequence in C. More precisely, the content
of the leftmost leaf is Q1[1..s1]Q2[1..s1] · · ·Qd[1..s1], the content of the second
leftmost leaf is Q1[s1 + 1..s2]Q2[s1 + 1..s2] · · ·Qd[s1 + 1..s2], and so on, and the
indices s1, s2, · · · satisfy the following conditions because of requirement on the
sizes of superblocks: L/2 ≤ s1kd ≤ 2L,L/2 ≤ (s2 − s1)kd ≤ 2L, · · ·.

Let f = lgλ n, where λ is a positive constant number less than 1 that we
will fix later. Each internal node of the B-tree we construct has at least f and
at most 2f children. We store the following d+ 1 sequences of integers for each
internal node v (let h be the number of children of v):

– A sequence P (v)[1..h], in which P (v)[i] is the number of positions stored in
the leaves of the subtree rooted at the ith child of v for any sequence in C
(note that this number is the same for all sequences in C);

– A sequence Rj(v)[1..h] for each j = 1, 2, · · · , d, in which Rj(v)[i] is the sum
of the integers from sequence Qj that are stored in the leaves of the subtree
rooted at the ith child of v.

We use Lemma 1 to encode each of the d+ 1 sequences of integers for v.
We further divide each superblock into blocks of ⌈⌈lgn⌉3/2⌉ bits each, and

maintain the blocks for the same superblock using a linked list. Only the last
block in the list can be partially full; any other block uses all its bits to store the
data encoded in the superblock. This is how we store the superblocks physically.

We provide a proof sketch for the following lemma that analyzes the space
cost of the above data structures (See Appendix B for the full proof):

5

Lemma 2. The above data structures occupy kd(n+o(n)) bits if the parameters
λ and η satisfy 0 < λ < 1− η.

Proof (sketch). It takes kdn bits to encode the integers in C. The number of
pointers that link the blocks is linear in the number of blocks which is O(kdn

lg3/2 n
),

so all the pointers occupy O(kdn√
lgn

) bits in total. The space wasted in the blocks

that are partially full is O(kdn lg lgn√
lgn

) bits. The number of nodes in the B-tree is

linear in the number of superblocks which isO(kdn lg lgn
lg2 n

). The space used for each

internal node is dominated by the space cost of the d+ 1 sequences constructed
for it, which is O(df lgn) bits with a precomputed universal table of size o(n) bits
(we only need one copy of this universal table for the sequences for all the internal
nodes). Therefore, the total space cost in bits is kdn(1+O(lg lgn√

lgn
)+O(df lg lgn

lgn)) =

kdn(1+O(lg lgn√
lgn

)+O(lg lgn
lg1−η−λ n

)), which is kd(n+ o(n)) when 0 < λ < 1− η. ⊓⊔

Supporting sum, search and update. We discuss these three operations first
because they do not change the size of C.

Lemma 3. The data structures in this section can support sum, search and
update in O(lgn

lg lgn) time with an additional universal table of o(n) bits.

Proof. To support sum(C, j, i), we perform a top-down traversal in the B-tree. In
our algorithm, we use a variable r that is initially 0, and its value will increase
as we go down the tree. We have another variable s whose initial value is i.
Initially, let v be the root of the tree. As P (v) stores the number of positions
stored in the subtrees rooted at each child of v, the subtree rooted at the cth

child of v, where c = search(P (v), i), contains position i. We also compute the
sum of the integers from the sequence Qj that are stored in the subtrees rooted
at the left siblings of the cth child of v, which is y = sum(Rj(v), c − 1), and we
increase the value of r by y. We then set v to be its cth child, decrease the value
of s by sum(P (v), c− 1), and the process continues until we reach a leaf. At this
time, r records the sum of the integers from the sequence Qj that are before the
first position stored in the superblock of the leaf we reach. As the height of this
B-tree is O(lgn

lg lgn), and the computation at each internal node takes constant

time by Lemma 1, it takes O(lgn
lg lgn) time to locate this superblock.

It now suffices to compute the sum of the first s integers from sequence Qj

that are stored in the superblock. This can be done by first going to the block

storing the first integer in the superblock that is from Qj, which takes O(
√
lgn

lg lgn)

time (recall that each block is of fixed size and there are O(
√
lgn

lg lgn) of them in

a superblock), and then read the sequence in chunks of ⌈ 1
2
lgn⌉ bits. For each

⌈ 1
2
lgn⌉ bits we read, we use a universal table A1 to find out the sum of the

z = ⌊⌈ 1
2
lg n⌉/k⌋ integers stored in it (the last a = ⌈ 1

2
lg n⌉ mod k bits in this

block are concatenated with the next ⌈ 1
2
lg n⌉ − a bits read for table lookup).

This table simply stores the result for each possible bit strings of length ⌈ 1
2
lgn⌉,

so that the above computation can be done in constant time. Note that the last

6

chunk we read this way may contain integers after Qj [i]. To address the problem,

we augment A1 so that it is a two dimensional table A1[1..2
⌈ 1

2
lg n⌉][1..z], in which

A[b][g] stores for the bth lexicographically smallest bit vector of length ⌈ 1
2
lgn⌉,

the sum of the first g integers of size k stored in it. This way the computation
in the superblock can be done in O(lgn

lg lg n) time, and thus sum(C, j, i) can be

supported in O(lgn
lg lgn) time. The additional data structure we require is table

A1, which occupies O(2⌈
1

2
lg n⌉ × ⌊⌈ 1

2
lg n⌉/k⌋ × lg n) = O((

√
n lg2 n)/k) bits.

The operations search and update can be supported in a similar manner.
See Appendix C for more details. ⊓⊔

Supporting insert and delete. We give a proof sketch of the following lemma
on supporting insert and delete (See Appendix D for the full proof):

Lemma 4. When w = Θ(lg n), the data structures in this section can support
insert and delete in O(lgn

lg lgn) amortized time.

Proof (sketch). To support insert(C, i), we locate the leaf containing position
i as we do for sum, updating P (v)’s along the way. We insert a 0 before the
ith position of all the sequences by creating a new superblock, copying the data
from the old superblock contained in this leaf to this new superblock in chunks
of size ⌈lg n⌉, and adding 0’s at appropriate positions when we copy. This takes
O(lgn

lg lgn + d) = O(lgn
lg lgn) time. If the size of the new superblock exceeds 2L, we

split it into two superblocks containing roughly the same number of positions.
The parent of the old leaf becomes the parent, v, of both new leaves, and we
reconstruct the data structures for P (v) and Rj(v)’s in O(df) = o(lgn

lg lg n) time.
This may make a series of internal nodes to overflow, and in the amortized
sense, each split of the leaf will only cause a constant number of internal nodes to
overflow. This gives us an algorithm that supports insert in O(lgn

lg lgn) amortized
time. The support for delete is similar.

Each insert or delete changes n by 1. This might change the value ⌈lgn⌉,
which will in turn affect L, the size of blocks, and the content of A1. As w =
Θ(lg n), L and the block size will only change by a constant factor. Thus if we
do not change these parameters, all our previous space and time analysis still
applies. The o(n) time required to reconstruct A1 each time ⌈lg n⌉ changes can
be charged to at least Θ(n) insert or delete operations. ⊓⊔

As we use a B-tree in our solution, a new problem is to deamortize the
process of supporting insert and delete. We also need to generalize our results
to the case in which the word size of the RAM is w = Ω(lg n). This leads to the
following lemma which presents our solution to the CSPSI problem, and we give
a sketch proof (See Appendix E for the full proof):

Lemma 5. Consider a collection, C, of d sequences of n nonnegative integers
each (d = O(lgη n) for any constant 0 < η < 1), in which each integer requires
k bits. Under the word RAM model with word size Ω(lg n), C can be represented
using O(kdn + w) bits to support sum, search, update, insert and delete in

7

O(lgn
lg lgn) time with a buffer of O(n lg n) bits (for the operation update(C, j, i, δ),

we assume |δ| ≤ lgn).

Proof (sketch). To deamortize the algorithm for insert and delete, we first
observe that the table A1 can be built incrementally each time we perform
insert and delete. Thus the challenging part is to re-balance the B-tree (i.e.
to merge and split its leaves and internal nodes) after insertion and deletion. For
this we use the global rebuilding approach of Overmars and van Leeuwen [21].
By their approach, if there exist two constant numbers c1 > 0 and 0 < c2 <
1 such that after performing c1n insertions and/or c2n deletions without re-
balancing the B-tree, we can still perform query operations in O(lg n

lg lg n) time,

and if the B-tree can be rebuilt in O(f(n)×n) time, we can support insertion or
deletion in O(lgn

lg lgn + f(n)) worse-case time using additional space proportional

to the size of our original data structures and a buffer of size O(n lg n) bits.
We first note that if we do not re-balance the B-tree after performing delete

c2n times for any 0 < c2 < 1, the time required to answer a query will not
change asymptotically. This is however different for insert: one bad case is to
perform insertion Θ(n) times in the same leaf. To address this problem, we use
the approach of Fleischer [22] as in [11]. Essentially, in his approach, at most one
internal node and one leaf is split after each insertion, which guarantees that the
maximum degree of internal nodes will not exceed 4f . Increasing the maximum
degree of internal nodes to 4f will not affect our analysis. This way after Θ(n)
insertions, query operations can still be performed in O(lgn

lg lgn) time. Finally, we

note that it takes O(nd) time to construct the B-tree, so we can support insert
and delete in O(d+ lgn

lg lgn) = O(lgn
lg lgn) time.

To apply the global rebuilding approach to our data structure, when the num-
ber of insert and delete operations performed exceeds half the initial length
of the sequences stored in the data structure, we build a new data structure in-
crementally. In this data structure, the value of ⌈lg n⌉ is determined by the value
of n when we start the rebuilding process. Using this we can handle the change
of the value of ⌈lg n⌉ smoothly. To reduce the space overhead when w = ω(lg n),
we simply allocate a memory block whose size is sufficient for the new structure
until another structure has to be built, and this only increases the space cost of
our data structures by a constant factor. Thus we can still use pointers of size
O(lg n) bits (not O(w) bits), and a constant number of machine words of O(w)
bits are required to record the address of each memory block allocated. ⊓⊔

Recall that in Section 2, we stated that González and Navarro [6] designed
a data structure of kdn(1 + O(1√

lgn
+ d

lgn)) bits. This is more compact, but it

only works for the special case in which w = Θ(lg n). González and Navarro [6]
actually stated that their result (See Section 2) would work when w = Ω(lg n).
This requires greater care than given in their paper. Their strategy is to adapt
the approach of Mäkinen and Navarro [14] developed originally for a dynamic
bit vector structure. To use it for the CSPSI problem, they split each sequence
into three subsequences. The split points are the same for all the sequences in C.
The set of left, middle, and right subsequences constitute three collections, and

8

they build CSPSI structures for each of them. For each insertion and deletion,
a constant number of elements is moved from one collection to another, which
will eventually achieve the desired result with other techniques. Moving one
element from one collection to another means that the first or the last integers
of all the subsequences in one collection must be moved to the subsequences
in another collection. However, their CSPSI structure only supports insertions
and deletions of 0’s at the same position in all subsequences in O(lg n) time,
which means moving one element using their structure cannot be supported fast
enough. Thus their structure only works when w = Θ(lg n). Their result can be
generalized to the case in which w = Ω(lg n) using the approach in Lemma 5,
but the space will be increased to O(kdn+w) bits and a buffer will be required.

4 Strings over Small Alphabets

In this section, we consider representing a dynamic string S[1..n] over an alpha-
bet of size σ = O(

√
lg n) to support access, rank, select, insert and delete.

Data Structures. Our main data structure is a B-tree constructed over S. We
again let L = ⌈ ⌈lg n⌉2

lg⌈lgn⌉⌉. Each leaf of this B-tree contains a superblock that has

at most 2L bits. We say that a superblock is skinny if it has fewer than L
bits. The string S is initially partitioned into substrings, and each substring is
stored in a superblock. We number the superblocks consecutively from left to
right starting from 1. Superblock i stores the ith substring from left to right. To
bound the number of leaves and superblocks, we require that there do not exist
two consecutive skinny superblocks. Thus there are O(n lg σ

L) superblocks.

Let b =
√
lgn, and we require that the degree of each internal node of the B-

tree is at least b and at most 2b. For each internal node v, we store the following
data structures encoded by Lemma 1 (let h be the number of children of v):

– A sequence U(v)[1..h], in which U(v)[i] is the number of superblocks con-
tained in the leaves of the subtree rooted at the ith child of v;

– A sequence I(v)[1..h], in which I(v)[i] stores the number of characters stored
in the leaves of the subtree rooted at the ith child of v.

As in Section 3, each superblock is further stored in a list of blocks of
⌈⌈lgn⌉3/2⌉ bits each, and only the last block in each list can have free space.

Finally for each character α, we construct an integer sequence Eα[1..t] in
which Eα[i] stores the number of occurrences of character α in superblock i. We
create σ integer sequences in this way, and we construct a CSPSI structure, E,
for them using Lemma 5.

The space analysis is similar to that in Section 3, and we have the following
lemma when w = Θ(lg n) (See Appendix F for its proof):

Lemma 6. The above data structures occupy n lg σ +O(n lg σ lg lg n√
lg n

) bits.

9

Supporting access, rank and select. We first show how to use our data struc-
tures to support query operations.

Lemma 7. The data structures in this section can support access, rank and
select in O(lgn

lg lgn) time with an additional universal table of O(
√
npolylog(n))

bits.

Proof. To support access(S, i), we perform a top-down traversal in the B-tree
to find the leaf containing S[i]. During this traversal, at each internal node v,
we perform search on I(v) to decide which child to traverse, and perform sum

on I(v) to update the value i. When we find the leaf, we follow the pointers to
find the block containing the position we are looking for, and then retrieve the
corresponding character in constant time. Thus access takes O(lgn

lg lgn) time.

To compute rankα(S, i), we first locate the leaf containing position i using
the same process for access. Let j be the number of the superblock contained in
this leaf, which can be computed using U(v) during the top-down traversal. Then
sum(E,α, j − 1) is the number of occurrences of α in superblocks 1, 2, · · · j − 1,
which can be computed in O(lgn

lg lgn) time by Lemma 5. To compute the number
of occurrences of α up to position i inside superblock j, we read the content of
this superblock in chunks of size ⌈ 1

2
lg n⌉ bits. As with the support for sum in the

proof of Lemma 3, this can be done in O(lgn
lg lgn) time using a precomputed two-

dimensional table A2 of O(
√
npolylog(n)) bits. Our support for selectα(S, i)

is similar (See Appendix G). ⊓⊔

Supporting insert and delete. To support insert and delete, we first show
how to support them when w = Θ(lg n). Careful tuning of the techniques for
supporting insertions and deletions for the CSPSI problem yields the following
lemma, whose proof is in Appendix H:

Lemma 8. When w = Θ(lg n), the data structures in this section can support
insert and delete in O(lgn

lg lgn) amortized time.

To deamortize the support for insert and delete, we cannot directly use the
global rebuilding approach of Overmars and van Leeuwen [21] here, since we do
not want to increase the space cost of our data structures by a constant factor,
and the use of a buffer is also unacceptable. Instead, we design an approach
that deamortizes the support for insert and delete completely, and differently
from the original global rebuilding approach of Overmars and van Leeuwen [21],
our approach neither increases the space bounds asymptotically, nor requires
any buffer. We thus call our approach succinct global rebuilding. This approach
still requires us to modify the algorithms for insert and delete so that after
c1n insertions (c1 > 0) and c2n deletions (0 < c2 < 1), a query operation can
still be supported in O(lgn

lg lgn) time. We also start the rebuilding process when
the number of insert and delete operations performed exceeds half the initial
length of the string stored in the data structure. The main difference between
our approach and the original approach in [21] is that during the process of
rebuilding, we never store two copies of the same data, i.e. the string S. Instead,

10

our new structure stores a prefix, Sp, of S, and the old data structure stores a
suffix, Ss, of S. During the rebuilding process, each time we perform an insertion
or deletion, we perform such an operation on either Sp or Ss. After that, we
remove the first several characters from Ss, and append them to Sp. By choosing
parameters and tuning our algorithm carefully, we can finish rebuilding after we
perform at most n0/3 update operations where n0 is the length of S when we
start rebuilding. During the rebuilding process, we can use both old and new
data structures to answer each query in O(lgn

lg lgn) time. All the details can be
found in Appendix I.

To reduce the space overhead when w = ω(lgn), we adapt the approach of
Mäkinen and Navarro [14] (See Appendix J). We finally use the approach of
González and Navarro [6] to compress our representation. Since their approach
is only applied to the superblocks (i.e. it does not matter what kind of tree
structures are used, since additional tree arrangement operations are not required
when the number of bits stored in a leaf is increased due to a single update in
their solution), we can use it here directly. Thus we immediately have:

Lemma 9. Under the word RAM model with word size w = Ω(lg n), a string
S of length n over an alphabet of size σ = O(

√
lgn) can be represented using

nH0 +O(n lg σ lg lgn√
lgn

) +O(w) bits to support access, rank, select, insert and

delete in O(lgn
lg lgn) time.

5 Strings over General Alphabets

We follow the approach of Ferragina et al. [23] that uses a generalized wavelet
tree to extend results on strings over small alphabets to general alphabets. Spe-
cial care must be taken to avoid increasing the O(w)-bit term in Lemma 9
asymptotically. We now present our main result (see Appendix K for its proof):

Theorem 1. Under the word RAM model with word size w = Ω(lg n), a string S
of length n over an alphabet of size σ can be represented using nH0+O(n lg σ lg lgn√

lgn
)

+ O(w) bits to support access, rank, select, insert and delete operations
in O(lgn

lg lgn (
lg σ

lg lgn + 1)) time. When σ = O(polylog(n)), all the operations can

be supported in O(lgn
lg lgn) time.

The following corollary is immediate:

Corollary 1. Under the word RAM model with word size w = Ω(lg n), a bit
vector of length n can be represented using nH0 + o(n) + O(w) bits to support
access, rank, select, insert and delete in O(lgn

lg lg n) time.

6 Applications

Dynamic Text Collection. Mäkinen and Navarro [14] showed how to use a dy-
namic string structure to index a text collection N which is a set of text strings
to support string search. For this problem, n denotes the length of the text

11

collection N when represented as a single string that is the concatenations of
all the text strings in the collection (a separator is inserted between texts). A
key structure for their solution is a dynamic string. González and Navarro [6]
improved this result in [14] by improving the string representation. If we use
our string structure, we directly have the following lemma, which improves the
running time of the operations over the data structure in [6] by a factor of lg lg n:

Theorem 2. Under the word RAM model with word size w = Ω(lg n), a text
collection N of size n consisting of m text strings over an alphabet of size σ can
be represented in nHh+o(n) · lg σ+O(m lg n+w) bits4 for any h ≤ (α logα n)−1
and any constant 0 < α < 1 to support:

– the counting of the number of occurrences of a given query substring P in N

in O(|P | lgn
lg lgn (lg σ

lg lgn + 1)) time;

– After counting, the locating of each occurrence in O(lg2 n(1
lg lgn + 1

lg σ)) time;

– Inserting and deleting a text T in O(|T | lgn
lg lgn (lg σ

lg lgn + 1)) time;

– Displaying any substring of length l of any text string in N in O(lg2 n(1
lg lgn+

1
lg σ) +

l lgn
lg lgn (

lg σ
lg lgn + 1)) time.

Compressed Construction of Text Indexes. Researchers have designed space-
efficient text indexes whose space is essentially a compressed version of the given
text, but the construction of these text indexes may still require a lot of space.
Mäkinen and Navarro [14] showed how to use their dynamic string structure to
construct a variant of FM-index [24] using as much space as what is required to
encode the index. This is useful because it allows text indexes of very large text
to be constructed when the memory is limited. Their result was improved by
González and Navarro [6], and the construction time can be further improved
by a factor of lg lg n using our structure:

Theorem 3. A variant of a FM-index of a text string T [1..n] over an alphabet
of size σ can be constructed using nHh + o(n) · lg σ bits of working space in
O(n lgn

lg lgn (
lg σ

lg lgn +1)) time for any h ≤ (α logα n)−1 and any constant 0 < α < 1.

7 Concluding Remarks

In this paper, we have designed a succinct representation of dynamic strings
that provide more efficient operations than previous results, and we have suc-
cessfully applied it to improve previous data structures on text indexing. As
a string structure supporting rank and select is used in the design of succinct
representations of many data types, we expect our data structure to play an
important role in the future research on succinct dynamic data structures. We
have also created some new techniques to achieve our results. We particularly
think that the approach of succinct global rebuilding is interesting, and expect
it to be useful for deamortizing algorithms on other succinct data structures.

4 Hh is the hth-order entropy of the text collection when represented as a single string.

12

References

1. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS. (1989) 549–554
2. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: SODA.

(1996) 383–391
3. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-

tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007) 43

4. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: SODA. (2003) 841–850

5. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary
relations and multi-labeled trees. In: SODA. (2007) 680–689

6. González, R., Navarro, G.: Rank/select on dynamic compressed sequences and
applications. Theoretical Computer Science 410(43) (2009) 4414–4422

7. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly
encoded binary relations and tree-structured documents. Theoretical Computer
Science 387(3) (2007) 284–297

8. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing 31(3) (2001) 762–776

9. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2(4) (2006) 510–534

10. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and in-
dexing labeled trees, with applications. Journal of the ACM 57(1) (2009)

11. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: SODA. (2010)
134–149

12. Barbay, J., Castelli Aleardi, L., He, M., Munro, J.I.: Succinct representation of
labeled graphs. In: ISAAC, Springer-Verlag LNCS 4835 (2007) 316–328

13. Chan, H.L., Hon, W.K., Lam, T.W.: Compressed index for a dynamic collection
of texts. In: CPM. (2004) 445–456

14. Mäkinen, V., Navarro, G.: Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms 4(3) (2008)

15. Blandford, D.K., Blelloch, G.E.: Compact representations of ordered sets. In:
SODA. (2004) 11–19

16. Chan, H.L., Hon, W.K., Lam, T.W., Sadakane, K.: Compressed indexes for dy-
namic text collections. ACM Transactions on Algorithms 3(2) (2007)

17. Lee, S., Park, K.: Dynamic rank/select structures with applications to run-length
encoded texts. Theoretical Computer Science 410(43) (2009) 4402–4413

18. Gupta, A., Hon, W.K., Shah, R., Vitter, J.S.: A framework for dynamizing succinct
data structures. In: ICALP. (2007) 521–532

19. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
In: STOC. (1989) 345–354

20. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: WADS.
(2001) 426–437

21. Overmars, M.H., van Leeuwen, J.: Worst-case optimal insertion and deletion meth-
ods for decomposable searching problems. Inf. Process. Lett. 12(4) (1981) 168–173

22. Fleischer, R.: A simple balanced search tree with o(1) worst-case update time. Int.
J. Found. Comput. Sci. 7(2) (1996) 137–150

23. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)

24. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: An alphabet-friendly FM-
index. In: SPIRE, Springer-Verlag LNCS 3246 (2004) 150–160

13

Appendices

A The Comparison of Our Results and Previous Results

alphabet space (bits) access, rank and
select

insert and delete

Mäkinen &
Navarro [14]

General nH0 + o(n) · lg σ O(lg n logq σ) (q =
o(
√
lgn))

O(q lg n logq σ)

Lee & Park [17] n lg σ+o(n)·lg σ O(lg n(lgσ

lg lg n
+ 1)) O(lg n(lgσ

lg lg n
+ 1))

amortized

González &
Navarro [6]

nH0 + o(n) · lg σ O(lg n(lgσ

lg lg n
+ 1)) O(lg n(lgσ

lg lg n
+ 1))

Gupta et al. [18] n lg σ +
lg σ(o(n)+O(1))

O(lg lgn) O(lgǫ n) amortized
(0 < ǫ < 1)

This paper nH0 + o(n) · lg σ O(lgn

lg lg n
(lg σ

lg lg n
+1)) O(lgn

lg lgn
(lg σ

lg lg n
+1))

Lee & Park [17] polylog(n) n lg σ+o(n)·lg σ O(lg n) O(lg n) amortized
González &
Navarro [6]

nH0 + o(n) · lg σ O(lg n) O(lg n)

Gupta et al. [18] n lg σ +
lg σ(o(n)+O(1))

O(1) O(lgǫ n) amortized
(0 < ǫ < 1)

This paper nH0 + o(n) · lg σ O(lgn

lg lg n
) O(lgn

lg lgn
)

Blandford &
Blelloch [15]

Binary O(nH0) O(lg n) O(lg n)

Chan et al. [13] O(n) O(lg n) O(lg n)

Chan et al. [16] O(n) O(lgn

lg lg n
) O(lgn

lg lgn
)

Mäkinen &
Navarro [14]

nH0 + o(n) O(lg n) O(lg n)

Sadakane &
Navarro [11]

n+ o(n) O(lgn

lg lg n
) O(lgn

lg lgn
)

Gupta et al. [18] nH0 + o(n)) O(lg lgn) O(lgǫ n) amortized
(0 < ǫ < 1)

This paper nH0 + o(n) O(lgn

lg lg n
) O(lgn

lg lgn
)

Table 1. A comparison of previous results and our results on succinct representations
of dynamic strings.

B Proof of Lemma 2

It takes kdn bits to encode the integers in C. To compute the overhead of storing
C in blocks using our strategy, we first bound the space required to store the
pointers used in the lists of blocks. The number of pointers is linear in the number
of blocks which is O(kdn

lg3/2 n
), and since it takes Θ(lg n) to encode each pointer,

14

all the pointers occupy O(kdn√
lgn

) bits in total. We then bound the space wasted in

the blocks that are partially full. As only one block in each superblock is allowed
to have some free space, the number of such blocks is at most the number of
superblocks which is O(kdn lg lgn

lg2 n
). Since up to ⌈⌈lgn⌉3/2⌉ bits can be wasted for

each such block, the total number of wasted bits here is at most O(kdn lg lg n√
lgn

).

Thus to store C using superblocks and blocks (without considering the B-tree),
it requires kdn+O(kdn lg lgn√

lgn
) bits.

It now suffices to compute the additional space required to store the B-tree.
The number of nodes in the B-tree is linear in the number of superblocks which is
O(kdn lg lgn

lg2 n
). Thus the structure of the B-tree (which is an ordinal tree without

considering any additional information stored with each node) can be stored in
O(kdn lg lgn

lgn) bits using a constant number of pointers per node. By Lemma 1,

the d + 1 sequences for each internal node can be maintained using O(df lg n)
bits with a precomputed universal table of size o(n) bits (we only need one copy
of this universal table for the sequences for all the internal nodes). Thus the

B-tree can be stored using O(kd
2fn lg lgn

lg n) + o(n) bits excluding the data stored

in its leaves. Therefore, the total space cost is kdn(1 + O(lg lgn√
lgn

) + O(df lg lgn
lgn))

bits. Since we assume d = O(lgη n) and f = lgλ n, the above space cost is
kdn(1 +O(lg lgn√

lgn
) +O(lg lgn

lg1−η−λ n
)). When 0 < λ < 1− η, the space cost becomes

kd(n+ o(n)) bits. ⊓⊔

C Details of Supporting search and update in the Proof
of Lemma 3

The support for operation search(C, j, x) is similar to that for sum. Initially we
let v be the root of the tree, and set r to be 0. We again start at the root v, and by
computing c = search(Rj(v), x), we know that the cth child of the root contains
the result. We also increase the value of r by sum(P (v), c − 1). We then set v
to be its cth child, decrease the value of x by sum(Rj(v), c− 1), and the process
continues until we reach a leaf. We then process the corresponding superblock
in chunks of size ⌈ 1

2
lgn⌉, summing up the integers from Qj in this superblock

using A1, until we get a sum that is larger than or equal to the current value
x. A binary search in O(lg lg n) time in the last chunk we read, with the help
of table A1, will give us the result (we also need to increase the result of the
binary search by the value stored in r when we return it as the result). The
entire process takes O(lgn

lg lgn) time.

To support update(C, j, i, δ), we perform a top-down traversal as we do for
sum until we reach a leaf. During the traversal, each time we go from a node v to
its child (let c be the rank of this child among its sibling), we update Rj(v) by
performing update(Rj(v), c, δ). When we reach a leaf, we can locate the k bits

storing Qj [i] in O(
√
lg n

lg lgn) time, as we only have to follow the pointers between

the blocks of the superblock O(
√
lgn

lg lg n) times. This will allow us to update Qj[i].

The entire process takes O(lgn
lg lgn) time. ⊓⊔

15

D Proof of Lemma 4

The operations insert and delete change the size of C by increasing and de-
creasing n by 1, respectively. When n changes, sometimes the value ⌈lgn⌉ also
changes, and this affects our data structures: First, this changes the maximum
and minimum sizes of superblocks and the size of blocks. Second, since we use
a precomputed universal table A1 to process ⌈ 1

2
lg n⌉ bits in chunks, whose con-

tent depends on ⌈ 1
2
lg n⌉, A1 may change when ⌈lgn⌉ changes. Thus we need to

handle the case in which ⌈lgn⌉ changes after an insert or delete operation.

We first consider the case in which ⌈lgn⌉ does not change after we perform
insert or delete. To support insert(C, i), we start from the root and traverse
down the B-tree as we do for update until we reach a leaf. During the traversal,
each time we go from a node v to its child (let c be the rank of this child among
its sibling), we update P (v) by performing update(P (v), c, 1). When we reach
a leaf, we insert a 0 before the ith position of all the sequences by creating a
new superblock, copying the data from the old superblock contained in this leaf
to this new superblock, and adding 0’s at appropriate positions when we copy.
We then replace the old superblock by the new superblock, and deallocate the
memory for the old superblock. As we can copy the bits from the old superblock
to the new superblock in chunks of size ⌈lgn⌉, and it takes constant time to add
a 0 into a sequence, the copying process takes O(lg n

lg lg n + d) = O(lgn
lg lgn) time.

Since each superblock has O(
√
lgn

lg lgn) blocks, the deallocation and allocation of a

superblock takes O(
√
lgn

lg lgn) time. Combined with the O(lgn
lg lgn) time required to

traverse down the B-tree, our algorithm takes O(lgn
lg lgn) time so far.

After the above process, there are two cases. First, the size of the new su-
perblock does not exceed 2L. In this case, we do nothing. Second, the size of the
new superblock has more than 2L bits, which means the leaf has m = ⌊ 2L

dk ⌋+ 1
integers from each sequence in C. In this case, we split the leaf into two. The left
new leaf stores first ⌈m/2⌉ integers from each sequence, and the right one stores
the rest. Clearly the size of the superblock for either leaf is between L/2 and 2L.
This requires another copying process, similar to that in the previous paragraph,
which takes O(lgn

lg lgn) time. The parent of the old leaf becomes the parent, v, of

both new leaves. We then reconstruct the data structures for P (v) and Rj(v)’s.

By Lemma 1, this requires O(df) = O(lgη+λ n) = o(lgn
lg lgn) time (recall that we

have 0 < λ < 1− η by Lemma 2). However, the parent might overflow (i.e. have
more than 2f children), and if we split the parent into two nodes, this might in
turn cause more nodes to overflow along the path to the root. Thus we need to
split all the O(lgn

lg lgn) ancestors of the new leaves and rebuild their associated
data structures in the worst case. It is well-known that in the amortized sense,
each split of the leaf of a B-tree will only cause a constant number of internal
nodes to overflow. This means that each insert requires o(lgn

lg lgn) amortized
time to rebuild the data structures for internal nodes. As a result, we now have
an algorithm that can support insert in O(lgn

lg lgn) amortized time.

16

Our support for delete is analogous to our support for insert, which takes
O(lgn

lg lgn) amortized time.

We now need only handle the case in which ⌈lg n⌉ is increased or decreased
by 1 after an insert or delete operation. First, this change will cause the value
L, as well as the size of blocks, to change. With the assumption, w = Θ(lg n)
in this lemma, no matter how many times we change the value of ⌈lgn⌉, L will
only change by a constant factor. The same applies to the value we choose as
block size. Thus, when ⌈lg n⌉ changes, if we do not change the block size, or the
maximum and minimum sizes for superblocks, it is easy to verify that all our
previous space and time analysis still applies.

We still need to take care of the table A1 built in Lemma 3. Recall that
A1 has O((

√
n lg2 n)/k) bits. Thus if we do not update A1 (i.e. if we keep use

the table built for the original given collection), its size may not always be a
lower order term. To address this problem, an easy strategy is to rebuild A1

each time ⌈lg n⌉ is increased or decreased by 1. This take o(n) time, but as this
happens only when we have performed insert or delete at least Θ(n) times,
we can charge this cost to Θ(n) insert or delete operations. Hence insert

and delete can be supported in O(lgn
lg lgn) amortized time. ⊓⊔

E Proof of Lemma 5

In this proof, we first deamortize the support for insert and delete of Lemma 4,
and then generalize our results to the case in which the word size of the RAM
is w = Ω(lg n).

To deamortize the algorithm for insert and delete, we first deamortize the
process of rebuilding table A1. As the content of A1 only depends on n, we can
simply construct the new tables incrementally each time we insert or delete.
The same strategy can be used for the table constructed when we use Lemma 1
to encode all the P (v)’s and Rj(v)’s.

The challenging part of this proof is to re-balance the B-tree (i.e. to merge
and split its leaves and internal nodes) after insertion and deletion. For this we
use the global rebuilding approach of Overmars and van Leeuwen [21]. By their
approach, if there exist two constant numbers c1 > 0 and 0 < c2 < 1 such that
after performing c1n insertions and/or c2n deletions without re-balancing the
B-tree, we can still perform query operations in O(lgn

lg lgn) time, and if the B-

tree can be rebuilt in O(f(n)× n) time, we can support insertion or deletion in
O(lgn

lg lgn + f(n)) worse-case time using additional space proportional to the size

of our original data structures and a buffer of size O(n lg n) bits. We first note
that if we do not re-balance the B-tree after performing delete c2n times for any
0 < c2 < 1, the time required to answer a query will not change asymptotically.
This is however different for insert: one bad case is to perform insertion Θ(n)
times in the same leaf.

17

To address the problem related to insert, we use the approach of Fleis-
cher [22] as in [11]5. Fleischer originally showed how to maintain a (a, 2b) tree
where b ≥ 2a such that insertions and deletions can be performed in O(1) worst-
case time after the positions in the leaves where such update operations occur
are located. Essentially, in his approach, at most one internal node is split after
each insertion, which guarantees that the maximum degree of internal nodes will
not exceed 2b. This is done by maintaining a pointer called r-pointer for each
leaf which initially points to the parent of this leaf. If we insert the new key into
leaf B, and if the r-pointer, rB, of B points to node v, we check if v has more
than b children. If it has, we split it into two smaller nodes. If now the parent,
w, of v has more than b children, we mark the edges to its two new children as
connected pair, and this information will be used when we split w in the future.
If we find that v has less than b children when we check its size, we either split
the leaf B if v is the root of the tree, or we make rB point to the parent of v. To
apply the above approach to our data structures, note that in the above process,
each time a key value of ⌈lg n⌉ bits is inserted into a leaf, while in our problem,
each time a character which occupies ⌈lg σ⌉ bits is inserted. Thus if we move
the pointer rB of any leaf B after ⌈lgn⌉/⌈lg σ⌉ characters are inserted into it
(assume that ⌈lgn⌉ is divisible by ⌈lg σ⌉ for simplicity), we can use Fleischer’s
approach here. The information about connected edges can be stored using a
bitmap of size 4f for each internal node. Using this approach, the maximum
degree of internal nodes is 4f , and our previous analysis still applies. This way
after O(n) insertions, query operations can still be performed in O(lgn

lg lgn) time.

Finally, we note that it takes O(nd) time to construct the B-tree, so we can
support insert and delete in O(d + lgn

lg lgn) = O(lgn
lg lgn) time.

To apply the global rebuilding approach to our data structure, when the num-
ber of insert and delete operations performed exceeds half the initial length
of the sequences stored in the data structure, we build a new data structure
incrementally. In this data structure, the value of ⌈lg n⌉ is determined by the
value, n0, of n when we start the rebuilding process. After we finish rebuilding,
the value of n can only be changed by a constant factor, thus we can still use
⌈lgn0⌉ as the value of ⌈lgn⌉ without affecting time or space bounds. Using this
we can handle the change of the value of ⌈lg n⌉ smoothly, since the difference
between ⌈lgn⌉ and ⌈lgn0⌉ is at most 1 before we start rebuilding again.

Extending our result to the more general case in which w = Ω(lg n) is more
difficult than the static case. For a static data structure, since its size does not
change, we can store it continuously in the memory, and thus the pointer size only
depends on the size of the data structure, which is independent of w. Therefore,
space bounds of static data structures designed for the case in which w = Θ(lg n)
usually remain the same when w = Ω(lg n). However, it is not the same for a
typical dynamic data structure. Since the size of dynamic structures changes,

5 The details of using Fleischer’s approach in [11] were omitted in the original paper
and were given in private communication with Gonzalo Navarro. They also used the
technique of global rebuilding in [11], but we are not convinced of the correctness of
their strategy, so we use global rebuilding differently here.

18

their components are stored in different memory blocks, and thus pointers of
size w are needed to record addresses in memory. When n is small enough that
w = ω(lg n), these pointers may occupy too much space.

To reduce the space overhead when w = ω(lgn), we first store each internal
node of the B-tree using the same number of bits. This will increase the space
cost of the data structures for internal nodes by a constant factor. For each value
of ⌈lgn⌉, we can compute the maximum number of bits required to store all these
internal nodes when the number of internal nodes in the B-tree is maximized,
and allocate a consecutive memory area that is just big enough for them. We
again waste a constant fraction of space in this memory area. We divide this
area into segments of the same size, and each segment is just big enough to
store an internal node. To record the starting address of this area, we need w
bits, but to locate any segment inside this area, pointers of size O(lg n) bits
are enough. To encode the B-tree, we also need to encode the pointers between
parents and children, and O(lg n) bits are enough for each such pointer (the
pointers that point to leaves can also be encoded in O(lg n) bits, and we will
show how to achieve this later). We also store these pointers in internal nodes,
so that each internal node has a pointer for its parent and O(

√
lg n) pointers

for its children. To handle the insertion and deletion of internal nodes, we chain
the empty segments by wasting one pointer in each segment. The leaves are
maintained in the same manner, and they can be referred to using O(lg n) bits.
This increases the total space cost to O(kdn + w) bits. ⊓⊔

F Proof of Lemma 6

The string occupies n lg σ bits. The space required for the pointers that link
the blocks is O(n lg σ√

lgn
) bits, and the space wasted in the partially full blocks is

O(n lg σ lg lg n√
lg n

) bits. The B-tree has O(n lg σ lg lgn
lg2 n

) nodes, and each internal nodes

encodes data of O(lg3/2 n) bits (including Θ(
√
lg n) pointers to its children and

parent), so the internal nodes of the B-tree require O(n lg σ lg lgn√
lgn

) bits. Finally,

the CSPSI structure E occupies O(n lg σ
L ×σ× lgn) = O(n lg σ lg lgn√

lgn
) bits, and its

buffer requires O(n lg σ
L × lg(n lg σ

L)) = O(n lg σ lg lgn
lgn) bits. Therefore, all the data

structures occupy n lg σ +O(n lg σ lg lgn√
lgn

) bits, including the precomputed tables

for the U(v)’s and I(v)’s. ⊓⊔

G Support for select in the Proof of Lemma 7

Our algorithm for selectα(S, i) first computes the number of the superblock
containing the ith occurrence of α in S, which is j = search(E,α, i). We also
know that the ith occurrence of α in S is the (i− sum(E,α, i− 1))th occurrence
of α in superblock j. We then locate superblock j by traversing down the B-tree,
using sum and search operations on the U(v)’s. Once we find superblock j, we
read its content in chunks of size ⌈ 1

2
lgn⌉. With table A2, we can find the chunk

19

containing the occurrence we are looking for in O(lgn
lg lg n) time. A binary search

within this chunk in O(lg lg n) time using A2 will find this occurrence. Thus
select can be supported in O(lgn

lg lgn) time. ⊓⊔

H Proof of Lemma 8

Operations insert and delete can possibly change the value of ⌈lg n⌉. We first
consider the case in which the value ⌈lgn⌉ remains unchanged after an insert

or delete operation.

To support insertα(S, i), we first locate the leaf containing S[i − 1] using
the same process for access. Let j be the number of the superblock contained
in this leaf, and assume that S[i− 1] is the zth character stored in this leaf. We
then insert α after this character, and shift the remaining characters, starting
from the character that is currently the (z + 1)th character in superblock j, in
chunks of size ⌈ 1

2
lgn⌉ bits. If the last block of the superblock does not have

enough free space for one character before insertion, but the superblock has no
more than 2L − ⌈⌈lgn⌉3/2⌉ bits, we create another block and append it to the
list of blocks for this superblock so that the insertion can be performed. After
this, we update E by calling update(E,α, j, 1), and we also visit the ancestors
of this leaf, updating their I(v) sequences by incrementing a certain number in
the sequence by 1. We then terminate the process, which takes O(lgn

lg lgn) time.

If superblock j is so full that the insertion of a single character cannot be
done, we check superblock j−1. If superblock j−1 is not full, we remove the first
character from superblock j, and insert it after the last character in superblock
j− 1. We then shift the second, third, until the (z− 1)th character to the left by
one position, again in chunks of size ⌈ 1

2
lg n⌉. We then insert α at the zth position

inside superblock j. Then we update the I(v) sequences of the ancestors of the
leaf containing superblock j−1, perform three updates to E, and then terminate.
This process takes O(lgn

lg lgn) time.

Finally we need to consider the case in which superblock j−1 does not exist,
or it is full. In this case, we split superblock j into two new superblocks, and
the left one has only one character (i.e. the first character stored in superblock
j). Then the second new superblock is not full, so that we can insert α after
the (z − 1)th character in it. Both new leaves will be the children of the parent,
v, of the original superblock j, and we need to reconstruct the data structures
U(v) and I(v) in O(

√
lg n) time. We then modify the U(u) and I(u) sequences

of each ancestor, u, of v, using the update operator (we pay O(1) time for every
node u here as we only need to increase one integer in U(u) by 1 and another
integer in I(u) by 1). Finally we also need to update E. Note that the new
superblocks created are numbered j and j+1. For the new superblock j, we first
call insert(E, j) and then call update(E, β, j, 1), where β is the only character
in this superblock. For superblock j + 1, performing update(E, β, j + 1,−1)
and update(E,α, j + 1, 1) will reflect the removal of one character β from this
superblock and the insertion of one character α into this block.

20

So far the only problem we have not considered is the possibility that splitting
a leaf may incur a series of splits of the nodes along the path from this leaf to
the root. Since the number of splits incurred after one insertion is O(1) in the
amortized sense, we can support insert in O(lgn

lg lgn) amortized time.

To support delete(S, i), we first locate the leaf, j, containing S[i] in O(lg n
lg lgn)

time. This process also tells us the position of S[i] in superblock j (assume that
S[i] is the qth character in superblock j). This allows us to retrieve the character,
α, stored in S[i]. We remove this character from its superblock by shifting, and
if this makes the last block of superblock j empty, we simply remove it. After
this, there are three cases. In the first case, superblock j becomes empty. In this
case, we remove the leaf containing superblock j, and rebuild the data structures
stored in the parent of the leaf containing superblock j. For any other ancestor,
v, of this leaf, we update the data structures I(v) and U(v) in constant time to
reflect the fact that there is one less character α and one less superblock stored
in the subtree rooted at v. We also perform delete(E, j) in O(lg n

lg lgn) time.

In the second case, superblock j is not empty, and the fact that it has one less
character does not violate the restriction that there are no two adjacent skinny
superblocks. This can happen if after removing S[j], superblock j is not skinny,
or it is skinny, but neither of the two superblocks adjacent to it is skinny. In this
case, only an update operation need be performed on I(v) for each ancestor,
v, of the leaf containing superblock j. We also perform update(E,α, j,−1) in
O(lgn

lg lgn) time.

In the third case, superblock j is not empty, but both superblock j and
at least one of its adjacent superblocks are skinny. Without loss of generality,
assume that superblock j − 1 is skinny. In this case, we locate superblock j − 1
by performing a top-down traversal, remove its last character, and insert it to
the first position in superblock j, so that superblock j is no longer skinny. If
superblock j − 1 becomes empty, we remove it. Updates to E and the ancestors
of superblocks j − 1 and j are performed in a similar manner as in the first two
cases.

It is clear that our algorithm for each case takes O(lg n
lg lg n) time. We also

need to consider the possibility of causing internal nodes to underflow after we
remove an empty superblock. Since each deletion causes O(1) amortized number
of internal nodes to underflow, delete can be supported in O(lg n

lg lg n) amortized
time.

We complete this proof by pointing out that the same approach used in the
proof of Lemma 4 to handle the changes of ⌈lgn⌉ can also be used here. ⊓⊔

I Deamortization of the Support for insert and delete

Operations over Strings

We first modify the support for insert so that it takes O(lgn
lg lgn) time, and that

for any constant c1 > 1, after performing c1n insertions, we can still perform
query operations in O(lgn

lg lgn) time.

21

Lemma 10. The data structures in Section 4 can support insert in O(lg n
lg lgn)

time such that for any constant c1 > 1, after performing insert c1n times, the
operations access, rank and select can still be supported in O(lgn

lg lgn) time.

Proof. As in the proof of Lemma 5, we also modify the approach of Fleischer [22]
here. It is however more challenging to apply Fleischer’s approach here because
we have to split the leaves in a specific way: A leaf has to be split into one leaf
that contains one character only, and a second leaf that contains the rest. This
allows us to update the CSPSI structure E correctly. Note that this only applies
to leaves, not internal nodes.

To perform insertα(S, i), after we locate the superblock, j, containing S[i−
1], recall that there are three cases. In the first case, superblock j is not full, so
we insert the character α into it. In the second case, superblock j is full, but
superblock j− 1 is not. We remove the first character from superblock j so that
we can insert α into it, and then we insert the removed character into superblock
j − 1. In this case, superblock j − 1 is the only superblock that has one more
character after insertion. In the third case, superblock j is full, but superblock
j − 1 is full or does not exist. We insert character α into superblock j, and then
split it (in the proof of Lemma 8, we state that we create a new superblock
before performing the insertion, which is equivalent to the process described
here). We can unify the above three cases by letting B be the leaf containing
the superblock whose size increases before we consider whether we should split
it. More specifically, B contains superblock j in the first and the third cases,
and it contains superblock j − 1 in the second. Thus, in our algorithm (to be
presented), we need only describe the operations performed when we insert a
character into B.

To describe our algorithm for insert, we need some definitions. In our al-
gorithm, we call a leaf full only when we mark it as full, and once we mark a
leaf full, it is always considered as a full leaf. Note that in the three cases listed
above, we need to check whether a certain superblock is full, and we say that a
superblock is full when the leaf containing it is marked as full. If a leaf B1 is full,
but the leaf, B2, immediately to its left is not, then B2 is called an overflow leaf
of B1. Initially, the i

th leftmost leaf contains one character if i is an odd number.
If i is an even number, we store m = ⌊2L/ lgσ⌋ characters in the ith leftmost
leaf, mark it as a full leaf, and we make the leaf immediately to the left to be its
overflow leaf. For simplicity, we assume that n is divisible by m + 1. We define
an internal node to be big when it has 2b or more children.

The following is our algorithm (recall that we need only describe the opera-
tions performed when we insert a character into B, and we also omit the details
of updating E and the structures stored in internal nodes since the proof of
Lemma 8 already shows how to update them):

1. Insert the new character into leaf B. Let v be the node that rB points to,
and if B is an overflow leaf, let B′ be the leaf immediately to the right of B,
i.e. B is the overflow leaf of B′.

22

2. If v is big, then split v into two smaller nodes v′ and v′′, and mark all the
child edges of v′ and v′′ as unpaired (a child edge of a node is an edge between
this node and one of its children).
If the parent, w, of v is also big, mark its edges to v′ and v′′ as paired.
If leaf B is an overflow leaf, let u be the node that rB′ points to. If u 6= v,
we perform the same operations on u as above if it is big, which includes the
operations on its (big) parent.

3. If v is the root of the tree, split B into two leaves such that the left leaf,
Bl, contains one character, while the right leaf, Br contains the rest. The
r-pointers of both Bl and Br point to their common father. Mark Br as a full
leaf, and make Bl be its overflow leaf. If B is an overflow leaf of B′ before,
now B′ no long has an overflow leaf.
If v is not the root of the tree, and we have inserted ⌈lgn⌉/⌈lg σ⌉ characters
into B since the last time we update rB , set rB to be the father of v, and if
B is an overflow leaf, also move rB′ one level up the tree.

The way we split internal nodes in Step 2 is the same as that in [22], and
the information about paired edges is used to decide how to split the internal
node. The main idea of the above algorithm is to move the r-pointers of a full
leaf, B′, and its overflow leaf, B, simultaneously, so that when the overflow leaf
B becomes full and has to be split, rB′ already points to the root of the tree.
The next insertion into B′ will split B′ since rB′ points to the root.

We now prove that, after c1n insertions, the following conditions hold:

1. The B-tree is a (b, 4b)-tree.
2. The height of the B-tree is Θ(lgn

lg lgn). The maximum height is 2 lgn
lg lgn .

3. Each leaf contains at most 2L bits.
4. Each full leaf has Θ(L) bits.
5. There do not exist two consecutive leaves that are not full.

To prove Condition 1, note that Fleischer [22] proved the correctness of his
approach by showing a set of invariants holds after each step of his algorithm.
Since we modify his algorithm by moving the r-pointers of a full leaf and its over-
flow leaf simultaneously, we essentially repeat some of the steps in his algorithm
up twice. Thus a strict proof can be given by walking through his proof and
making trivial changes. Condition 2 follows directly from Condition 1. Condi-
tions 3 and 4 are true because a non-full leaf becomes full only when its r-pointer
reaches the root, and each time we move up its r-pointer, roughly lg n bits have
been inserted into the leaf. Finally, Condition 5 can be proved by induction. It
is true initially before we perform the sequence of insert operations, and we
always create a new leaf that is not full between two full leaves.

Conditions 1-3 guarantee that query operations can be supported in O(lg n
lg lgn)

time, while Conditions 4 and 5 guarantee that the space bound remains the same.
Thus this lemma follows. ⊓⊔

We now consider the support for delete. To support delete, our approach
here is to simply locate the leaf containing the character to be deleted and remove

23

this character. After performing delete c2n times this way for any 0 < c2 < 1,
the time required to answer a query will not change asymptotically. When we
perform a mixed sequence of insertions and deletions, we perform each insertion
as if there were no deletions performed in between. There is one technical detail
here: When a leaf is made empty by deletions, we cannot remove it. This is
because this leaf could be an overflow leaf, whose removal could affect future
insert operations performed on the full leaf immediately to its right. Thus a
sequence of deletions may leave a number of empty leaves. For each empty leaf
Be, we keep them conceptually in the data structure, but we deallocate the
space used to store them, and store its r-pointer with its parent. This will not
increase the space for internal nodes asymptotically. The corresponding child
edge of its parent is set to be a NULL pointer, and when we count the number
of superblocks stored in the subtree rooted at this parent, this empty leaf still
counts, and its corresponding entry in E is not removed. We store rBe with the
parent of Be because if Be is an overflow leaf, and in the future, one character is
to be inserted into the full leaf to its right, we can still create a new superblock
for Be so that this insertion can still be performed.

So far we have described our algorithms for insert and delete, and showed
that after c1n insertions and/or c2n deletions, a query operation can still be
supported in O(lgn

lg lgn) time. We can now describe a modified version of global
rebuilding that will deamortize the support for insert and delete completely,
and different from the original global rebuilding approach of Overmars and van
Leeuwen [21], our approach neither increases the space bounds asymptotically,
nor requires any buffer. We thus call our approach succinct global rebuilding.

As with the original global rebuilding approach, we start the rebuilding pro-
cess when the number of insert and delete operations performed exceeds half
the initial length of the string stored in the data structure. Let n0 denote the
length of the string when we start rebuilding. In the new data structure, the
value of ⌈lg n⌉ is determined by the value of n0. We will build the new structure
in the next n0/3 insert and delete operations.

The main difference between our approach and the original approach in [21]
is that during the process of rebuilding, we never store two copies of the same
data, i.e. the string S. Instead, our new structure stores a prefix, Sp, of S, and
the old data structure stores a suffix, Ss, of S. During the rebuilding process,
each time we perform an insertion or deletion, we perform such an operation
on either Sp or Ss. After that, we remove the first 3 characters from Ss, and
append them to Sp. This would finish building the new data structure in n0/3
update operations, if all the updates were performed on Sp. This is however
not always the case. For the general case, we observe that the only operation
that may make the rebuilding process take more time is insertions performed
on Ss. Thus to speed up the process, after an insertion into Ss, we remove the
first 4 characters (instead of 3) from Ss and append them to Sp. Hence we can
always finish rebuilding after we perform at most n0/3 update operations. After
rebuilding, the length of the string stored in the new data structure is at least

24

2n0/3 and at most 4n0/3. This means our approach can handle the change of n
smoothly, as the difference between ⌈lg n0⌉ and ⌈lgn⌉ is at most 1.

The above process always keeps one copy of the string S, and thus all the
leaves occupy n lg σ + o(n) lg σ bits. The delete operation described previously
however does not remove internal nodes, although it deallocates the memory for
empty leaves. To make it possible to deallocate the memory for internal nodes
fast, we use the strategy in the proof of Lemma 5 that stores the internal nodes in
a single memory block. A fraction of the space in this memory block is wasted,
but it still uses o(n) bits. Thus we can deallocate the memory block for the
internal nodes of the old structure in one step after we finish building the new
structure. The same strategy can be used to maintain the CSPSI structure E.
We also build the universal table A2 incrementally as in the proof of Lemma 5.

The above analysis shows that our succinct global rebuilding scheme can
deamortize the support for insert and delete without changing the space
bounds. During the rebuilding process, we use both old and new data struc-
tures to answer queries, and it is easy to verify that we can still support each
query operation in O(lgn

lg lgn) time.

J Reducing the Space Overhead when w = ω(lgn)

To reduce the space overhead when w = ω(lg n), we use two different strategies
to maintain two different types of data. For the internal nodes in the B-tree,
we note that the data structures constructed for them occupy o(n) bits in total.
Thus we can use the approach in the proof of Lemma 5 to store the internal
nodes in a single memory block, and this only wastes o(n) bits if each of the
pointers that point to the external nodes can be encoded in O(lg n) bits (we will
show how to achieve this later). The same strategy also applies to the internal
nodes of the B-tree for the CSPSI structure E. We can also use it for the blocks
of the superblocks contained in the leaves of E; they occupy o(n) bits so that
we can afford wasting a constant fraction of the space. Since the size of each
memory area allocated this way does not change for the same value of ⌈lgn⌉, we
can make them adjacent in the memory to form a single memory area, and we
call it the fixed memory area of the structure.

We cannot do so for the superblocks of our string structure; they occupy
m = n lg σ + o(n) · lg σ bits, so we cannot afford increasing this space cost by
a constant factor. We use a different strategy: we divide the bits required to
encode all the superblocks into

√

m/w chunks of
√
mw bits each. All the chunks

are full except the last one, so only up to
√
mw− 1 bits in these chunks may be

wasted. We use
√

m/w points of size w to record the starting position of each
chunks, and this costs

√
mw bits. We divide each chunk into segments, and each

segment is used to store a block of a superblock. Note that a segment may span
up to two chunks so that all but the last chunk is full. To encode the starting
position of a block, we only need to encode the rank of the chunk containing the
first bit of the block which takes 1

2
lg(m/w) bits, and the offset within this chunk

25

which takes 1
2
lg(mw) bits. Thus O(lg n) bits are sufficient to encode a pointer

to a block or a superblock.
The overall space cost of our structure is thus n lg σ+o(n) · lg σ+O(

√
wm)+

O(w) = n lg σ + o(n) · lg σ + O(
√
wn lg σ) + O(w) bits. The third term in the

above formula is o(n) · lg σ if w = o(n) · lg σ, and it is O(w) otherwise. ⊓⊔

K Proof of Theorem 1

Ferragina et al. [23] showed how to use a generalized wavelet tree to extend
results on strings over small alphabets to general alphabets. Let q = Θ(

√
lg n).

This structure is essentially a q-ary tree of O(⌈ lg σ
lg lg n⌉) levels, and each level stores

a string over alphabet of size q. This can be directly applied to the dynamic case,
and because each operation on S requires a constant number of operations on
each level, the time required for each operation is now O(lgn

lg lgn (
lg σ

lg lgn + 1)) for

the entire structure. The only part that is not clear is the O(w)-bit term in
space analysis: If we have an O(w)-bit term at each level of the wavelet tree, the
space cost will be O(w(lg σ

lg lgn + 1)) bits. This cost can be decreased using the

approach of Mäkinen and Navarro [14]: We observe that changes of ⌈lg n⌉ occur
simultaneously for the sequences stored at different levels. Thus we can combine
all the fixed memory areas into one area, and maintain the rest of the memory
together (m in Appendix J is now nH0 + o(n) · lg σ). This reduces such space
cost to O(w). ⊓⊔

26

