
Accepted Manuscript

Parameterized Searching with mismatches for run-length encoded
strings

Alberto Apostolico, Péter L. Erdős, Alpár Jüttner

PII: S0304-3975(12)00238-1
DOI: 10.1016/j.tcs.2012.03.018
Reference: TCS 8800

To appear in: Theoretical Computer Science

Please cite this article as: A. Apostolico, P.L. Erdős, A. Jüttner, Parameterized Searching with
mismatches for run-length encoded strings, Theoretical Computer Science (2012),
doi:10.1016/j.tcs.2012.03.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tcs.2012.03.018

Parameterized Searching with Mismatches for Run-length Encoded
Strings✩

Alberto Apostolico1

College of Computing, Georgia Institute of Technology,
801 Atlantic Drive, Atlanta, GA 30318, USA and
Dipartimento di Ingegneria dell’ Informazione,

Università di Padova Padova, Via Gradenigo 6/A, 35131 Padova, Italy,

Péter L. Erdős2

A. Rényi Institute of Mathematics, Hungarian Academy of Sciences,

Budapest, P.O. Box 127, H-1364 Hungary

Alpár Jüttner3

Department of Operations Research, Eötvös University of Sciences,
Pázmány Péter sétány 1/C, Budapest, H-1117 Hungary

Abstract

Parameterized matching between two strings occurs when it is possible to reduce the first one to
the second by a renaming of the alphabet symbols. We present an algorithm for searching for
parameterized occurrences of a patten in a textstring when both are given in run-length encoded
form. The proposed method extends to alphabets of arbitrary yet constant size with O (|rp| × |rt|)
time bounds, previously achieved only with binary alphabets. Here rp and rt denote the number of
runs in the corresponding encodings for p and t. For general alphabets, the time bound obtained by
the present method exhibits a polynomial dependency on the alphabet size. Such a performance is
better than applying convolution to the cleartext, but leaves the problem still open of designing an
alphabet independent O (|rp| × |rt|) time algorithm for this problem.

Keywords: string searching, parameterized matching, bipartite graphs, parametric graph matching

1. Introduction1

String searching is one of the basic primitives of computation. In the standard formulation of the2

problem, we are given a pattern and a text and it is required to find all occurrences of the pattern3

in the text. Several variants of the problem have also been considered, e.g., allowing mismatches,4

insertions, deletions, swaps etc. In the parameterized variant, a match exists at one position of the5

text if the alphabets of pattern and text can be consistently mapped into one another in such a way6

that all characters match pairwise.7

✩An extended abstract related to this work was presented at the SPIRE 2010 Symposium and is reported in its
Proceedings.

Email addresses: axa@cc.gatech.edu (Alberto Apostolico), elp@renyi.hu (Péter L. Erdős), alpar@cs.elte.hu
(Alpár Jüttner)

1Work carried out in part while visiting P.L. Erdős at the Rényi Institute, with support from the Hungarian
Bioinformatics MTKD-CT-2006-042794, Marie Curie Host Fellowships for Transfer of Knowledge. Additional partial
support was provided by the United States - Israel Binational Science Foundation (BSF) Grant No. 2008217, and by
the Research Program of Georgia Tech.

2This work was supported in part by Alexander von Humboldt Foundation and by the Hungarian NSF, under
contract NK 78439 and K 68262.

3This work was supported by OTKA grant CK80124.

Preprint submitted to Theoretical Computer Science February 21, 2012

Manuscript (PDF)

More formally, two strings y and y′ of equal length over respective alphabets Σy and Σy′ are said8

to parameterized match if there exists a bijection π : Σy → Σy′ such that π(y) = y′, i.e., renaming9

each character of y according to its corresponding element under π yields y′. (Here, for simplicity,10

we assume that all symbols of both alphabets are used somewhere.) Two natural problems are then11

parameterized matching, which consists of finding all positions of some text x where a pattern y12

parameterized matches a substring of x, and approximate parameterized matching, which seeks, at13

each location of x, a bijection π maximizing the number of parameterized matches at that location.14

The first variant was introduced and studied by B. Baker [2, 3] and others, motivated by issues15

of program compaction in software engineering. In [2, 3], optimal, linear time algorithms were given16

under the assumption of constant size alphabets. A tight bound for the case of an alphabet of17

unbounded sizes was later presented in [1].18

In this paper we study approximate variants of the problem where a (possibly controlled) number19

of mismatches is allowed. Hence, we are concerned with the second variant. Formally, we seek to find,20

for given text x = x1x2 . . . xn and pattern y = y1y2 . . . ym over respective alphabets Σt and Σp, the21

injection πi from Σp to Σt maximizing the number of matches between πi(y) and xixi+1 . . . xi+m−122

(for all i = 1, 2, . . . n−m + 1).23

The general version of the problem can be solved in time O (nm(
√

m + log n)) by reduction to24

bipartite graph matching (refer to, e.g., [4]): each mutual alignment defines one graph in which edges25

are weighed according to the number of effacing characters and the problem is to choose the set of26

edges of maximum weight. Note that for fixed alphabet sizes the number of possible injections is also27

finite and thus it is enough to try them out individually through resort to convolution, resulting in28

total O(n log n) time overall. This no longer appears to be possible as soon as one of the alphabets29

is unbounded.30

In [5], the problem of approximate parameterized matching was considered under the further31

restriction that mismatches at any given location could not exceed a predefined maximum number32

k, and an algorithm was presented working in time O
(
nk
√

k + mk log m)
)
.33

Here we focus on the case where both strings are run-length encoded. This case was previously34

examined in [4] with the further restriction that one of the alphabets is binary. For this special35

setup, the authors gave a construction working in time O
(
n + (rp × rt)α(rt) log rt

)
, where rp and36

rt denote the number of runs in the corresponding encodings for p and t, respectively and α is the37

inverse of Ackerman’s function. This complexity actually reduces to O(n + (rp × rt)) when both38

alphabets are binary. (On one hand side it is obvious that the run-length encoding can be computed39

from the original string in linear time and space while, on the other hand, the original text can be40

unproportionately long as a function of the run-encoded length. It is also clear that we cannot gain41

anything without reasonable sized runs, which is equivalent to a relative small number of runs.)42

Here we turn our interest to a more general case: we still assume run-length encoded text and43

pattern, however we relax the constraints on the the size of both alphabets. We give an algorithm,44

having a time complexity of the form O
(
(rt × rp)× F1 × F2

)
, where F1 and F2 are polynomials of45

substantial degree in the alphabet size, that reports the text positions where a parameterized match46

with mismatches between the two run-length encoded strings is achieved within a preassigned bound47

k.48

This paper is organized as follows. In the next section, we give some basic properties, and derive49

the combinatorial facts used in our construction. Section 3 is devoted to the design and description50

of our algorithm. The main property subtending to the construction is established in Section 4. The51

last section lists conclusions and open problems.52

2. Problem description53

We assume that x and y are presented in their run-length encodings. In general that means that54

the text is given as x = xα1
1 xα2

2 . . . x
αrt
rt where xi ∈ Σt, xi 6= xi+1 and

∑
αj = n. Similarly the pattern55

is y = yβ1
1 . . . y

βrp
rp (with analogous properties). However here we choose another way describe this en-56

coding method: the text is described as a list of rt ordered pairs: x =
(
[L1, x1]; [L2, x2], . . . , [Lrt , xrt]

)
57

2

where L1 = 1 while Li = 1 +
∑i−1

j=1 αj . The list L1, . . . , Lrt+1 is termed to the left-end list of the58

text. This notation is extended to y in analogy: y =
(
[Λ1, y1]; [Λ2, y2], . . . , [Λrp , yrp]

)
.59

Assume now that we want to compute the approximate parameterized matching of the pattern60

beginning at location i of x. The substring x′ of length m facing the pattern now is described by61

ordered pair list
(
[ℓ1, x

′
1], [ℓ2, x

′
2], . . . [ℓk, x′k]

)
where ℓ1 = 1, while the list ℓ2, . . . , ℓk consists of (in62

ascending order) those ℓj = L − (i − 1) which satisfy 1 < ℓj ≤ m (where L runs the left-end list).63

The list ℓ1, . . . , ℓk is called the i-current left-end list and one can imagine it as the corresponding64

portions of (i − 1)-left-shifted left-hand list. The letter x′1 = x[i] or, with other words, it is = xj65

where j is the maximum subscript such that Lj ≤ i. Furthermore the list x′2, . . . , x
′
k is equal to the66

list xj+1, . . . xj+k−1.67

Definition 1. The i-fusion (or fusion when this causes no ambiguity) is the list Fi = f1, . . . , fj68

which is the merge of the i-current-left-end list ℓ1, . . . , ℓk of the text and the left-end list Λ1, Λrp of69

the pattern.70

Thus, the elements of the i-fusion Fi can come from the i-current-left-end list of the text, or the left-71

end list of the pattern, or both. Two elements corresponding to the same aligned position coalesce72

in a single item and are said to form a bump. (In position 1 a bump occurs if and only if position73

Lj in the left-end list of text is actually equal to i.74

Example: To illustrate all these notions assume that the actual portion of the text is x[21 : 42] =
11021522120213021103. With our notation this is

x[21 : 42] =
(
[21, 0]; [23, 1], [28, 2], [30, 1], [32, 0], [34, 1], [37, 0], [39, 1], [40, 0]

)
;

the elements of the corresponding 22-current-left-end list is ℓ1 = 1, ℓ2 = 2, ℓ3 = 7, · · · , ℓ8 = 18, ℓ9 =75

19. (The number of the elements in the current-left-end list may vary the pattern is facing to the76

text), while the fusion list F22 consists of 14 positions (f1 = 1, . . . , f7 = 13, . . . f14 = 20). The77

example in Figure 1 shows all these notations in place:78

ℓ1=1
|

ℓ3=7
|

ℓ6=13
|

x20 x22 x43

1 0 0 1 1 1 1 1 2 2 1 1 0 0 1 1 1 0 0 1 0 0 0 .

a a a b b b b b a a c c c b a a b a a b
|

f1

|
f2

|
f3

|
f4

|
f7

|
f14

Figure 1: Illustrating the 22-fusion of pattern and text intervals. .

As mentioned, the problem of finding an optimal injection from Σp to Σt at position i can be79

re-formulated in terms of the following standard graph theoretic problem.80

We are given a weighted bipartite graph Gi with classes Σt and Σp, which draws its edge-weights81

from all possible bijections πi, as follows: for each edge u, v (u ∈ Σp and v ∈ Σt) the weight wu,v is82

the number of matches induced by accepting πi(u) = v.83

Under this formulation, an optimal approximate parameterized matching at position i corre-84

sponds to a maximum weighted matching (MWM for short) in a bipartite graph G.. There are85

several standard methods to determine the best weighted matching in a bipartite graph. However,86

the complexity of these algorithms is O
(
V 2 log V + V E

)
(see [8]), which would make the iterated87

application to our case prohibitive. In what follows, we follow an approach that resorts to MWM88

more sparsely.89

We begin by examining the effect of shifting the text by one position to the left. Clearly, this90

might change the weight wu,v for every pair. Let δu,v be the value of this change, which could be91

either negative or positive. The new weights after the shift will be in the form wu,v + δu,v. Observe92

that as long as no bump occurs each consecutive shift will cause the same changes in the weights.93

3

Within such a regimen, we could calculate the new weights in our graph following every individual94

shift, each time at a cost of O (|Σt||Σp|) time. But we could as well just use the linear functions95

wu,v + αδu,v to determine the weights of the maximum weighted matching achievable throughout,96

without computing every intermediate solution.97

Whenever a bump occurs, we have to recalculate the δ functions. Each recalculation should98

take care of all characters that are actually affected by the bump. However, the number of function99

recalculations cannot exceed rt × rp, the maximum number of of bumps.100

In conclusion, our task can be subdivided into two interrelated, but computationally distinct,101

steps:102

1. At every bump we have to (re)calculate the function ∆ in order to quickly update the weights103

on the bipartite graph.104

2. Within bumps, we have to update the weight function following each unit shift and determine105

whether or not a change in the matching function is necessary.106

3. Parameterized string matching via parametric graph matching107

For our intended treatment, we will neglect for a moment the fact that the “weight” and “difference”108

functions (w and ∆, respectively) take integer values and even that the relative shifts between pattern109

and text take place in a stepwise discrete fashion.110

Definition 2. Let G = (A, B, E) be a bipartite graph with node sets A and B and edge set E.111

Assume that |A| ≤ |B|. A set of independent edges is called (graph) matching, and a full matching112

if it covers each vertex in A.113

Let M denote the set of full matchings. Let w : E −→ R and ∆ : E −→ R be two given functions114

on the edges. For some λ ∈ R+ and for an arbitrary function z : E −→ R let zλ := z + λ∆.115

Furthermore, let116

L(z) := max{z(M) : M ∈M}
and117

Mz := {M ∈M : z(M) = L(z)}.
For the sake of simplicity we set L(λ) := L(wλ) and Mλ := Mwλ

. A fundamental property of the118

function L is the following119

Lemma 1. L(λ) is a convex piecewise linear function.120

Proof: wλ(M) = w(M) + λ∆(M) is a linear — therefore convex — function of λ for each M ∈M.121

The function L(λ) is the maximum of these functions for all M ∈M, where M is a finite set. 2122

A function π : A ∪B −→ R is called a potential if π(b) ≥ 0 for all b ∈ B. Let as before z : E −→ R123

be an arbitrary weight function on the edges. Then a potential is called z-feasible or shortly feasible124

if z(uv) ≤ π(u) + π(v) holds for all uv ∈ E. Finally, let Πz denote the set of z-feasible potentials.125

Then, Πz is a closed convex polyhedron in RA∪B.126

The following duality theorem is well known (see e.g. [7]):127

Theorem 2.

L(z) = min

{ ∑

v∈A∪B
π(v) : π ∈ Πz

}
.

If π∗ ∈ Πz is an arbitrary minimizing feasible potential, then a full matching M is z-minimal if and128

only if z(uv) = π∗(u) + π∗(v) holds for all uv ∈ M . 2129

From the linearity of the objective function we get the following130

Lemma 3. Let [α, β] be a linear segment of L(λ). Then Mλ1 = Mλ2 for all λ1, λ2 ∈ (α, β). 2131

4

Definition 3. Let f : Rn −→ R be a convex function. A vector s ∈ Rn is a subgradient of the132

function f in the point u ∈ Rn if f(v) ≥ f(u) + 〈s, v − u〉 holds for all v ∈ Rn.133

Let ∂f(u) denote the set of the subgradients of f in u, i.e134

∂f(u) :=
{
s ∈ Rn : f(v) ≥ f(u) + 〈s, v − u〉 ∀v ∈ Rn

}
. (1)

Obviously ∂f(u) is never empty and |∂f(u)| = 1 if and only if f is differentiable in u.135

Theorem 4. For any λ ≥ 0, the value of L(λ) and a subgradient of the function L in the point λ136

can be computed using the max weight matching algorithm.137

Proof: It is easy to see that for any M ∈Mλ, ∆(M) is a subgradient of the function L in the point138

λ. In fact the extremal points of the ∂L(λ) can be obtained in this way, i.e.139

∂L(λ) :=
[
min{∆(M) : M ∈Mλ}, max{∆(M) : M ∈Mλ}

]
.

2140

Assuming now that a threshold value γ ∈ R+ is assigned, we look for the set141

Γ := {λ ∈ R+ : L(λ) ≤ γ}. (2)

(When we apply this method for the parameterized string matching problem then γ = k, but in this142

proof γ is not necessarily integer.)143

Due to the convexity of L, the set Γ is a closed interval. Moreover, it is also easy to see that144

executing the following Newton-Dinkelbach method from an upper and a lower bounds of Γ gives145

us the endpoints of Γ in finitely many steps. (See Figure 2 demonstrating the execution of the146

algorithm.)147

Procedure Maxl(w,d,lstart)148

begin149

l:=lstart;150

do151

M:=max_matching(w+l*d);152

l:=(gamma-w(M))/d(M);153

while (w+l*d)(M)>0;154

return l;155

end156

Using a technique originally developed by Radzik[6], it can be shown that157

Theorem 5. The above method terminates in O
(
|E| log2 |E|

)
iterations, thus the full running time158

is O
(
|B||E|2 log2 |E|+ |B|3|E| log3 |E|

)
.159

We defer the proof of this theorem the next section.160

Note that the number of iterations (therefore the running time) is independent from the distance of161

the initial starting points and from the w and ∆ values in the input. It solely depends on the size162

of the underlying graph.163

We now apply the above treatment to our string searching problem. As it has already been mentioned164

in Section 2, our problem can be considered as a sequence of weighted matching problems over special165

auxiliary graphs, where an optimal matching in the auxiliary graph represents a best mapping of166

the pattern alphabet at that position. It has further been noticed that the weights change linearly167

between two bumps, therefore the problem breaks up into rtrp pieces of parametric bipartite graph168

matching problems (over the integral domain).169

First, we mention that restricting ourselves to integer solutions does not cause any problem, as170

it suffices to round up the solutions into the right direction at the end of the algorithm.171

5

γ

λ1 λ2 λ3 λ4 λ5 Γ

L(λ)

Figure 2: The steps of Newton-Dinkelback method

Now, let us analyze the running time. The nodes of the graph represent the characters of the
alphabets, therefore |A| = |Σp| and |B| = |Σt|, whereas |E| = |A||B| = |Σp||Σt|. Thus the running
time needed to solve a single instance of the parametric weighted matching problem is

O
(
|B||A|2|B|2 log2(|A||B|) + |B|3|A||B| log3(|A||B|)

)

= O
(
|A|2|B|3 log2(|B|) + |B|4|A| log3(|B|)

)

= O
(
|A||B|3 log2 |B|(|A| + |B| log |B|)

)

= O
(
|A||B|4 log3 |B|

)

= O
(
|Σp||Σt|4 log3 |Σt|

)
.

Note that this is simply a constant time algorithm if the size of the alphabets are constant. Thus172

for any fixed size alphabets the full running time of the algorithm is simply the number of bumps,173

i.e.174

O (rprt) . (3)

If the size of the alphabet is a parameter, then the full running time is175

O
(
rprt|Σp||Σt|4 log3 |Σt|

)
. (4)

4. Proof of Theorem 5176

We prove Theorem 5 by using a technique developed by Radzik [6] to solve the minimum cost-177

to-time ratio path problem in strongly polynomial time. The proof presented here is an adaptation178

of the idea to handle matchings instead of paths. Moreover, in our case we must allow negative ∆179

6

components, which also requires special care (and increases the time complexity upper bound by a180

factor of log n).181

Here we examine the case when lstart = 0 (i.e. when we are looking for the minimum of the182

interval Γ), the other case is similar. We can assume without loss of generality that γ = 0. (A183

possible transformation is to decrease each components of w uniformly by γ/|A|).184

Let M1, M2, . . . , Mt denote the solutions found by the algorithm in the consecutive iterations and185

let λ1, λ2, . . . , λt and π1, π2, . . . , πt be the corresponding λ values and optimal feasible potentials,186

respectively.187

One can observe that L(λ1) = wλ1(M1) > L(λ2) = wλ2(M2) > · · · > L(λt) = wλt(Mt) and188

∆(M1) < ∆(M2) < · · · < ∆(Mt) < 0 and λ1 < λ2 < · · · < λt .189

A more sophisticated convergence property of the Newton-Dinkelbach method was found by190

Radzik [6] as follows:191

Theorem 6 (Radzik).
L(λi+1)∆(Mi+1)

L(λi)∆(Mi)
≤ 1

4
.

2192

Definition 4. Let edge e ∈ E be called i-essential if

e ∈ Mi ∪Mi+1 ∪Mi+2 ∪ · · · .

Lemma 7. Let k :=
⌈

log2 |E|+3
2

⌉
. Then for any i at least one of the following holds:193

(a) ∆(Mi+k) ≥ 1
2∆(Mi),194

(b) there exists an i-essential edge e that is not (i + k)-essential.195

Proof: Let us assume that (a) does not hold, i.e. ∆(Mi+k) < 1
2∆(Mi) < 1

2∆(Mi+1) < 0. From196

Theorem 6 we get that197

L(λi+k)∆(Mi+k) ≥ 1
2|E|L(λi+1)∆(Mi+1),

which yields in turn that198

L(λi+k) <
1
|E|L(λi+1).

It is enough to prove that there exist e ∈ E such that e ∈ Mi(e) but e 6∈ Mj for all j > i + k.199

Let w̃λ(uv) := wλ(uv)− πλ(u)− πλ(v). Since πλ is a feasible potential, w̃ ≤ 0.200

wλi+k
(Mi) = w(Mi) + λi+k∆(Mi) ≤ −L(λi+1) < −|E|L(λi+k),

thus

w̃λi+k
(Mi) = wλi+k

(Mi)−
∑

uv∈Mi

(
πλi+k

(u) + πλi+k
(v)

)
<

− |E|L(λi+k)−
∑

u∈A∪B

πλi+k
= −(|E|+ 1)L(λi+k).

So, there exists e ∈ Mi such that w̃λi+k
(e) < −L(λi+k). Assume that e ∈ Mj . Then

0 < L(λj) = wλj (Mj) ≤ wλi+k
(Mj) = w̃λi+k

(Mj)+

+
∑

uv∈Mj

(
πλi+k

(u) + πλi+k
(v)

)
< −L(λi+k) + L(λi+k) = 0,

therefore we get by contradiction that e ∈ Mj, which completes the proof of Lemma 7. 2201

7

Now we can prove Theorem 5 by considering the iterations202

i =
⌈

log2 |E|+ 3
2

⌉
, 2

⌈
log2 |E|+ 3

2

⌉
, 3

⌈
log2 |E|+ 3

2

⌉
, . . .

and counting how many times the cases (a) and (b) of Lemma 7 may occur.203

Case (b) may clearly occur at most |E| times. In order to estimating the number of occurrences204

of case (a), we use the following theorem of Goemans (published by Radzik in [6]), which states that205

a geometrically decreasing sequence of numbers constructed in a certain restricted way cannot be206

exponentially long.207

Lemma 8 (Goemans [6]). Let c = (c1, c2, · · · , cn) be an n dimensional vector with real compo-208

nents, and let y1,y2, · · · ,yq be vectors from {−1, 0, 1}n. If for all i = 1, 2, · · · , q − 1209

0 < yi+1c ≤
1
2
yic,

then q = O(n log n). 2210

Observe that those ∆(Mi) values that fall under Case (a) form a sequence of the kind required by211

the Lemma 8, whence of length O(|E| log |E|).212

5. Conclusion213

We have presented a method for computing the parameterized matching on run-length encoded214

strings over alphabets of arbitrary size. The approach extends to alphabets of arbitrary yet con-215

stant size the O (|rp| × |rt|) performance previously available only for binary alphabets. For general216

alphabets, the bound obtained by the present method exhibits a substantial polynomial dependency217

on the alphabet size. This, however, should be contrasted with the general version of the problem,218

that can be solved in time O(nm(
√

m + log n)). In other words, although the exponents are quite219

high in our expression, the overall complexity depends – in contrast with the convolution based220

approaches – on the run-length encoded lengths of the input and it is still polynomial in the size of221

the alphabets. The problem of designing an alphabet independent O(|rp| × |rt|) time algorithm for222

this problem is still open.223

References224

[1] Amir, A., Farach, M., Muthukrishnan, S.: Alphabet Dependence in Parameterized Matching.225

Information Processing Letters, 49, 111–115 (1994).226

[2] Baker, B. S.: Parameterized Duplication in Strings: Algorithms and an Application to Software227

Maintenance. SIAM Journal of Computing, 26 (5) 1343–1362 (1997).228

[3] Baker, B. S.: Parameterized Pattern Matching: Algorithms and Applications. Journal Computer229

System Science, 52, (1) 28–42 (1996).230

[4] Apostolico, A. , Erdős, P. L., Lewenstein, M.: Parameterized Matching with Mismatches. J.231

Discrete Algorithms 5 (1), 135–140 (2007).232

[5] Hazay,C., Lewenstein, M., Sokol, D.: Approximate Parameterized Matching. ACM Transactions233

on Algorithms, 3 (3) Article 29. (2007).234

[6] Radzik, T., Fractional combinatorial optimization, In Handbook of Combinatorial Optimization.235

editors DingZhu Du and Panos Pardalos, vol. 1, Kluwer Academic Publishers, (1998).236

[7] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications,237

Prentice Hall, Englewood Cliffs, N.J. (1993).238

[8] Fredman, M.L., Tarjan, R.E.: Fibonacci Heaps and Their Uses in Improved Network Optimiza-239

tion Algorithms. Journal of ACM 34 (3) 596–615 (1987).240

8

