Skip to main content

Range Queries over Untangled Chains

  • Conference paper
String Processing and Information Retrieval (SPIRE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6393))

Included in the following conference series:

  • 1104 Accesses

Abstract

We present a practical implementation of the first adaptive data structure for orthogonal range queries in 2D [Arroyuelo et al., ISAAC 2009]. The structure is static, requires only linear space for its representation, and can even be made implicit. The running time for a query is \(O(\lg k\lg n + \min(k,m)\lg n + m)\), where k is the number of non-crossing monotonic chains in which we can partition the set of points, and m is the size of the output. The space consumption of our implementation is 2n + o(n) words. The experimental results show that this structure is competitive with the state of the art. We also present an alternative construction algorithm for our structure, which in practice outperforms the original proposal by orders of magnitude.

This work was supported in part by NSERC Canada, the Canada Research Chairs Programme, the Go-Bell and David R. Cheriton Scholarships Program, and an Ontario Graduate Scholarship.

An Erratum for this chapter can be found at http://dx.doi.org/10.1007/978-3-642-16321-0_42

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org

  2. Arroyuelo, D., Claude, F., Dorrigiv, R., Durocher, S., He, M., López-Ortiz, A., Munro, J.I., Nicholson, P.K., Salinger, A., Skala, M.: Untangled monotonic chains and adaptive range search, http://www.recoded.cl/docs/untangling.pdf

  3. Arroyuelo, D., Claude, F., Dorrigiv, R., Durocher, S., He, M., López-Ortiz, A., Munro, J.I., Nicholson, P.K., Salinger, A., Skala, M.: Untangled monotonic chains and adaptive range search. In: 20th International Symposium on Algorithms and Computation (ISAAC), pp. 203–212 (2009)

    Google Scholar 

  4. Bar Yehuda, R., Fogel, S.: Partitioning a sequence into few monotone subsequences. Acta Informatica 35(5), 421–440 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbay, J., López-Ortiz, A., Lu, T., Salinger, A.: An experimental investigation of set intersection algorithms for text searching. J. Exp. Algorithmics 14 ,3.7–3.24 (2009)

    Google Scholar 

  6. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  Google Scholar 

  7. Chazelle, B., Guibas, L.J.: Fractional Cascading: I. A Data Structuring Technique. Algorithmica 1(2), 133–162 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum k-modal partitions of permutations. Journal of Discrete Algorithms 6(3), 381–392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In: 16th Annual Symposium on Foundations of Computer Science (FOCS), pp. 75–84 (1975)

    Google Scholar 

  10. Fomin, F.V., Kratsch, D., Novelli, J.C.: Approximating minimum cocolorings. Information Processing Letters 84(5), 285–290 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: 1984 ACM SIGMOD international conference on Management of data (SIGMOD), pp. 47–57. ACM, New York (1984)

    Chapter  Google Scholar 

  12. Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non-replicating index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 257–276. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Lueker, G.S.: A data structure for orthogonal range queries. In: 19th Annual Symposium on Foundations of Computer Science (SFCS), pp. 28–34. IEEE Computer Society, Washington (1978)

    Chapter  Google Scholar 

  14. Supowit, K.J.: Decomposing a set of points into chains, with applications to permutation and circle graphs. Information Processing Letters 21(5), 249–252 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, B., Chen, J., Lu, E., Zheng, S.: Design and Performance Evaluation of Sequence Partition Algorithms. Journal of Computer Science and Technology 23(5), 711–718 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Claude, F., Munro, J.I., Nicholson, P.K. (2010). Range Queries over Untangled Chains. In: Chavez, E., Lonardi, S. (eds) String Processing and Information Retrieval. SPIRE 2010. Lecture Notes in Computer Science, vol 6393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16321-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16321-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16320-3

  • Online ISBN: 978-3-642-16321-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics