Abstract
In this paper we study algorithms for the max-plus product of Monge matrices. These algorithms use the underlying regularities of the matrices to be faster than the general multiplication algorithm, hence saving time. A non-naive solution is to iterate the SMAWK algorithm. For specific classes there are more efficient algorithms. We present a new multiplication algorithm (MMT), that is efficient for general Monge matrices and also for specific classes. The theoretical and empirical analysis shows that MMT operates in near optimal space and time. Hence we give further insight into an open problem proposed by Landau. The resulting algorithms are relevant for bio-informatics, namely because Monge matrices occur in string alignment problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Burkard, R., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discrete Applied Mathematics 70(2), 95–161 (1996)
Apostolico, A., Atallah, M.J., Larmore, L.L., McFaddin, S.: Efficient parallel algorithms for string editing and related problems. SIAM J. Comput. 19(5), 968–988 (1990)
Schmidt, J.: All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings. SIAM Journal on Computing 27, 972 (1998)
Tiskin, A.: Semi-local longest common subsequences in subquadratic time. J. Discrete Algorithms 6(4), 570–581 (2008)
Landau, G., Myers, E., Schmidt, J.: Incremental string comparison. SIAM Journal on Computing 27, 557–582 (1998)
Ishida, Y., Inenaga, S., Shinohara, A., Takeda, M.: Fully incremental LCS computation. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 563–574. Springer, Heidelberg (2005)
Alves, C.E.R., Cáceres, E.N., Song, S.W.: An all-substrings common subsequence algorithm. Discrete Applied Mathematics 156(7), 1025–1035 (2008)
Landau, G.M.: Can dist tables be merged in linear time – An open problem. In: Proceedings of the Prague Stringology Conference 2006 (2006)
Tiskin, A.: Fast distance multiplication of unit-monge matrices. In: ACM-SIAM SODA, pp. 1287–1296 (2010)
Tiskin, A.: Semi-local string comparison: algorithmic techniques and applications. ArXiv e-prints (July 2007), arXiv0707.3619T
JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidimensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)
Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-searching algorithm. Algorithmica 2(1), 195–208 (1987)
Iliopoulos, C.S., Mouchard, L., Rahman, M.S.: A new approach to pattern matching in degenerate DNA/RNA sequences and distributed pattern matching. Mathematics in Computer Science 1(4), 557–569 (2008)
Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: SODA, 841–850 (2003)
Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in proteins. Atlas of protein sequence and structure 5(suppl. 3), 345–351 (1978)
Crochemore, M., Landau, G., Ziv-Ukelson, M.: A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM Journal on Computing 32(6), 1654–1673 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Russo, L.M.S. (2010). Multiplication Algorithms for Monge Matrices. In: Chavez, E., Lonardi, S. (eds) String Processing and Information Retrieval. SPIRE 2010. Lecture Notes in Computer Science, vol 6393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16321-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-16321-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16320-3
Online ISBN: 978-3-642-16321-0
eBook Packages: Computer ScienceComputer Science (R0)