Skip to main content

Using Financial Ratios to Select Companies for Tax Auditing: A Preliminary Study

  • Conference paper
Organizational, Business, and Technological Aspects of the Knowledge Society (WSKS 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 112))

Included in the following conference series:

  • 1720 Accesses

Abstract

Tax auditing procedures include an investigation of the accounting records of a company and of other sources of information in order to assess whether the taxation has been based on correct and complete information. When there are found discrepancies between the accounting information and the real situation, the taxation should be corrected so that the eventual tax defaults are assessed and debited. The paper analyzes to what extent the financial performance of a company can be used as an indicator of tax defaults. We focus on one type of tax, namely employer’s contribution, and four financial ratios. We evaluate the model in a study of Finnish companies by using a binomial logistic regression analysis. The study is exploratory and at a preliminary stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Finnish Tax Administration: Good Tax Auditing Practice (2010), http://www.vero.fi/?article=4137

  2. Bakin, S., Hegland, M., Wiliams, G.: Mining taxation data with parallel BMARS. Parallel Algorithms and Applications 15(1-2), 37–55 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bolton, R.J., Hand, D.J.: Statistical fraud detection: A review. Statistical Science 17(3), 235–255 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Watrin, C., Struffert, R., Ullmann, R.: Benford’s law: An instrument for selecting tax audit targets? Review of Managerial Science 2, 219–237 (2008)

    Article  Google Scholar 

  5. McCalden, J.D.: Patent WO 01/22316 A1: Method and apparatus for selecting taxpayer audits. Patent, World Intellectual Property Organization, International Bureau (2001)

    Google Scholar 

  6. Gillen, M.A., Packer, S.M.: New IRS strategic initiative: Increased audit on its way? The Legal Intelligencer (September 2, 2009)

    Google Scholar 

  7. Benford, F.: The law of anomalous numbers. Proc. Am. Philos. Soc. 78(4), 551–572 (1938)

    MATH  Google Scholar 

  8. Nigrini, M.J., Mittermaier, L.J.: The use of Benford’s law as an aid in analytical procedures. Auditing: A Journal of Practice & Theory 16(2), 52–67 (1997)

    Google Scholar 

  9. Niskanen, J., Keloharju, M.: Earnings cosmetics in a tax-driven accounting environment: Evidence from Finnish public firms. The European Accounting Review 9(3), 443–452 (2000)

    Article  Google Scholar 

  10. Kallio, K., Back, B.: The self-organizing map in selecting companies for tax audit. In: Proc. of the 32nd Annual Congress of the European Accounting Association, Tampere (2009)

    Google Scholar 

  11. Salmi, T., Martikainen, T.: A review of the theoretical and empirical basis of financial ratio analysis. The Finnish Journal of Business Economics 4, 426–448 (1994)

    Google Scholar 

  12. Beaver, R.: Financial ratios as predictors of failure. J. Accounting Research 4, 71–111 (1966)

    Article  Google Scholar 

  13. Altman, E.: Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy. Journal of Finance 13, 589–609 (1968)

    Article  Google Scholar 

  14. Ohlson, J.: Financial ratios and the probabilistic prediction of bankruptcy. J. Accounting Research 18, 109–131 (1980)

    Article  Google Scholar 

  15. Back, B., Laitinen, T., Sere, K., van Wezel, M.: Choosing bankruptcy predictors using discriminant analysis, logit analysis and genetic algorithms. TUCS Technical report 40 (1996)

    Google Scholar 

  16. Eklund, T.: The Self-Organizing Map in Financial Benchmarking. TUCS PhD Thesis, Åbo Akademi University (2004)

    Google Scholar 

  17. Atiya, A.F.: Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE Trans. On Neural Networks 12(4), 929–935 (2001)

    Article  Google Scholar 

  18. Spathis, C., Doumpos, M., Zopounidis, C.: Detecting falsified financial statements: A comparative study using multicriteria analysis and multivariate statistical techniques. European Accounting Review 11(3), 509–535 (2002)

    Article  Google Scholar 

  19. Keskusrikospoliisi: Rakennusalan yrityksiin kohdistuvan ja niitä hyödyntävän rikollisuuden teematilannekuva, Report no. KRP/RTP 393/213/2010, (2010), http://www.intermin.fi/intermin/hankkeet/turva/home.nsf/

  20. Kosonen, E.: (2010), http://www.palkkatyolainen.fi/pt2004/pt0403/p040407-t2.html

  21. Finnish Tax Administration: Tax Glossary (2010), http://www.vero.fi/?path=488,684&domain=VERO_ENGLISH

  22. Norušis, M.J.: PASW Statistics 18.0 Statistical Procedures Companion. Prentice Hall, Englewood Cliffs (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marghescu, D., Kallio, M., Back, B. (2010). Using Financial Ratios to Select Companies for Tax Auditing: A Preliminary Study. In: Lytras, M.D., Ordonez de Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds) Organizational, Business, and Technological Aspects of the Knowledge Society. WSKS 2010. Communications in Computer and Information Science, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16324-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16324-1_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16323-4

  • Online ISBN: 978-3-642-16324-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics