Skip to main content

Compositional Effects in Italian Primary Schools: An Exploratory Analysis of INVALSI SNV Data and Suggestions for Further Research

  • Conference paper
Organizational, Business, and Technological Aspects of the Knowledge Society (WSKS 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 112))

Included in the following conference series:

Abstract

The EU2020 strategy, which aims at turning “the EU into a smart, sustainable and inclusive economy delivering high levels of employment, productivity and social cohesion”, heavily relies on the human capital of its citizens. As a solid strand of literature posits, formal education is crucial for the development of individual human capital (among others: Barro & Lee 2001; Hanushek & Kimko 2000; Hanushek & Woessmann 2007; 2010). Indeed, one of the 5 headline targets of the strategy attains to reducing the share of early school leavers to less than 10% and ensuring that at least 40% of the younger generation reaches a tertiary degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ammermueller, A., Pischke, J.: Peer Effects in European Primary Schools: Evidence from PIRLS, Institute for the Study of Labor, IZA (2006)

    Google Scholar 

  • Barro, R.J., Lee, J.: International data on educational attainment: updates and implications. Oxford Economic Papers 53(3), 541–563 (2001)

    Article  Google Scholar 

  • Campodifiori, E., et al.: Un indicatore di status socio-economico-culturale degli allievi della quinta primaria in Italia. Istituto nazionale per la valutazione del sistema educativo di I-stru-zio-ne e di formazione (INVALSI), Rome (2010)

    Google Scholar 

  • Cipollone, P., Rosolia, A.: Social Interactions in High School: Lessons from an Earthquake. The American Economic Review 97(3), 948–965 (2007)

    Article  Google Scholar 

  • Coleman, J.S., et al.: Equality of Educational Opportunity. US Government Printing Office, Washington (1966)

    Google Scholar 

  • Coulombe, S., Tremblay, J., Marchand, S.: Literacy scores, human capital and growth across fourteen OECD countries. Statistics Canada, Ottawa (2004)

    Google Scholar 

  • Ebbes, P., Böckenholt, U., Wedel, M.: Regressor and random-effects dependencies in multilevel models. Statistica Neerlandica 58(2), 161–178 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Edmonds, R.: Effective Schools for the Urban Poor. Educational Leadership 37(1), 15–18, 20–24 (1979)

    Google Scholar 

  • van Ewijk, R., Sleegers, P.: The effect of peer socioeconomic status on student achievement: A meta-analysis. Educational Research Review 5(2), 134–150 (2010)

    Article  Google Scholar 

  • Falorsi, S.: Nota metodologica sulla strategia di Campionamento. Istituto nazionale per la valutazione del sistema educativo di Istruzione e di formazione (INVALSI), Rome (2009)

    Google Scholar 

  • Fullan, M.: The Meaning of Educational Change. Teachers College Press, New York (1982)

    Google Scholar 

  • Gay, G.: Valutazione degli apprendimenti disciplinari nella scuola secondaria di primo grado. Istituto regionale di ricerca della Lombardia (IRER), Milan (2005)

    Google Scholar 

  • Gray, J., Goldstein, H., Jesson, D.: Changes and improvements in schools’ effectiveness: trends over five years. Research Papers in Education 11(1), 35 (1996)

    Article  Google Scholar 

  • Grilli, L., Rampichini, C.: Selection bias in random intercept models. Multilevel Modelling Newsletter 17(1), 9–18 (2005)

    Google Scholar 

  • Hanushek, E.A.: Conceptual and Empirical Issues in the Estimation of Educational Production Functions. The Journal of Human Resources 14(3), 351–388 (1979)

    Article  Google Scholar 

  • Hanushek, E.A.: Education and Race: An Analysis of the Educational Production Process. D.C. Heath & Co., Boston (1972)

    Google Scholar 

  • Hanushek, E.A., Kain, J.F., Markman, J.M.: Does peer ability affect student achievement? Journal of Applied Econometrics 18(5), 527–544 (2003)

    Article  Google Scholar 

  • Hanushek, E.A., Kimko, D.D.: Schooling, Labor-Force Quality, and the Growth of Nations. The American Economic Review 90(5), 1184–1208 (2000)

    Article  Google Scholar 

  • Hanushek, E.A., Woessmann, L.: The Economics of International Differences in Educational Achievement (2010)

    Google Scholar 

  • Hanushek, E.A., Woessmann, L.: The role of education quality for economic growth. The World Bank, Washington D.C (2007)

    Book  MATH  Google Scholar 

  • Henderson, V., Mieszkowski, P., Sauvageau, Y.: Peer group effects and educational production functions. Journal of Public Economics 10(1), 97–106 (1978)

    Article  Google Scholar 

  • Hill, P.W., Rowe, K.J.: Modelling Student Progress in Studies of Educational Effectiveness. School Effectiveness and School Improvement: An International Journal of Research, Policy and Practice 9(3), 310 (1998)

    Article  Google Scholar 

  • Hoxby, C.M.: Peer effects in the classroom: learning from gender and race variation. NBER, Cambridge (2000)

    Book  MATH  Google Scholar 

  • INVALSI: Le competenze in scienze, lettura e matematica degli studenti quindicenni. In: Rapporto Nazionale PISA 2006, Armando editore, Roma (2008)

    Google Scholar 

  • INVALSI: Le prove del Servizio Nazionale di Valutazione 2008-2009 - Analisi Tecnica. Istituto nazionale per la valutazione del sistema educativo di Istruzione e di formazione (INVALSI), Rome (2010)

    Google Scholar 

  • INVALSI: Ricerca Internazionale IEA PIRLS 2006. Lettura nella scuola primaria. Rapporto nazionale. Armando editore, Rome (2008)

    Google Scholar 

  • INVALSI: Servizio Nazionale di Valutazione a.s. 2008-2009. Rilevazioni degli apprendimenti. Scuola primaria. Prime analisi. Istituto nazionale per la valutazione del sistema educativo di Istruzione e di formazione (INVALSI), Rome (2009)

    Google Scholar 

  • Kim, J., Frees, E.: Omitted Variables in Multilevel Models. Psychometrika 71(4), 659–690 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kramarz, F., Machin, S.J., Ouazad, A.: What Makes a Test Score? The Respective Contributions of Pupils, Schools, and Peers in Achievement in English Primary Education. SSRN eLibrary (2009)

    Google Scholar 

  • Krueger, A.B., Lindahl, M.: Education for Growth: Why and For Whom? Journal of Economic Literature 39(4), 1101–1136 (2001)

    Article  Google Scholar 

  • Manski, C.F.: Identification of Endogenous Social Effects: The Reflection Problem. The Review of Economic Studies 60(3), 531–542 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • McEwan, P.J.: Peer effects on student achievement: evidence from Chile. Economics of Education Review 22(2), 131–141 (2003)

    Article  MathSciNet  Google Scholar 

  • Mortimore, P., et al.: School Matters: the Junior Years. Open Books, Wells (1988)

    Google Scholar 

  • Mullis, I.V.S., Martin, M.O., Foy, P.: TIMSS 2007 international mathematics report. TIMMS & PIRLS International Study Center, Boston College, Chestnut Hill (2008)

    Google Scholar 

  • OECD: Education at a Glance 2010 Revised edn., Organization for Economic Co-operation and Development (OECD) (2010)

    Google Scholar 

  • OECD: Towards better schools and more equal opportunities for learning. In: OECD Economic Surveys, Italy, ch. 4, pp. 93–130 (2009)

    Google Scholar 

  • OECD & JRC, Handbook on Constructing Composite Indicators: Methodology and User Guide, Paris, France (2008)

    Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A.: Multilevel and Longitudinal Modeling Using Stata, 2nd edn. STATA press, College Station (2008)

    MATH  Google Scholar 

  • Raudenbush, S.W., Willms, D.J.: The Estimation of School Effects. Journal of Educational and Behavioral Statistics, 307–335 (1995)

    Google Scholar 

  • Rutter, M., et al.: Fifteen Thousand Hours: Secondary Schools and Their Effects on Children. Harvard University Press, Cambridge (1982)

    Google Scholar 

  • Schlotter, M., Schwerdt, G., Woessmann, L.: Econometric Methods for Causal Evaluation of Education Policies and Practices: A Non-Technical Guide. SSRN eLibrary (2009)

    Google Scholar 

  • Sirin, S.R.: Socioeconomic Status and Academic Achievement: A Meta-Analytic Review of Research. Review of Educational Research 75(3), 417–453 (2005)

    Article  Google Scholar 

  • Snijders, T.A.B., Bosker, R.J.: Multilevel analysis: an introduction to basic and advanced multilevel modeling. Sage, Thousand Oaks (1999)

    MATH  Google Scholar 

  • Snijders, T.A.B., Berkhof, J.: Diagnostic checks for multilevel models. In: de Leeuw, J., Meijer, E. (eds.) Handbook of Multilevel Analysis. Springer, New York (2008)

    Google Scholar 

  • Steele, F., Vignoles, A., Jenkins, A.: The effect of school resources on pupil attainment: a multilevel simultaneous equation modelling approach. Journal of the Royal Statistical Society: Series A (Statistics in Society) 170(3), 801–824 (2007)

    Article  MathSciNet  Google Scholar 

  • Thrupp, M., Lauder, H., Robinson, T.: School composition and peer effects. International Journal of Educational Research 37(5), 483–504 (2002)

    Article  Google Scholar 

  • Willms, J.D.: Social Class Segregation and Its Relationship to Pupils’ Examination Results in Scotland. American Sociological Review 51(2), 224–241 (1986)

    Article  Google Scholar 

  • Witziers, B., Bosker, R.J., Krüger, M.L.: Educational Leadership and Student Achievement: The Elusive Search for an Association. Educational Administration Quarterly 39(3), 398–425 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petracco-Giudici, M., Vidoni, D., Rosati, R. (2010). Compositional Effects in Italian Primary Schools: An Exploratory Analysis of INVALSI SNV Data and Suggestions for Further Research. In: Lytras, M.D., Ordonez de Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds) Organizational, Business, and Technological Aspects of the Knowledge Society. WSKS 2010. Communications in Computer and Information Science, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16324-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16324-1_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16323-4

  • Online ISBN: 978-3-642-16324-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics