Skip to main content

Inverse Eigenvalue Problem for Real Symmetric Five-Diagonal Matrix

  • Conference paper
Information Computing and Applications (ICICA 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 106))

Included in the following conference series:

  • 1575 Accesses

Abstract

In this paper, a kind of inverse eigenvalue problem which is the reconstruction of real symmetric five-diagonal matrix by there different eigenpairs is proposed. Given there distinguished eigenpairs, using the special computational relationship of Jacobi matrix and symmetric five-diagonal matrix, the solvability of the problem is discussed, and the sufficient and necessary conditions for the existence of a solution of this problem, as well as the analytic formula of this solution, are derived. Furthermore, to prove the theory, an appropriate numerical experiment is given by programming.

Supported by the Natural Science foundation of Hebei Province of China (No. A2010000905).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dai, H.: Inverse Eigenvalue Problems for Jacobian and Symmetric Trididagonal Matrices. J. Numerical Mathematics A Journal of Chinese Universities 12(1), 1–13 (1990)

    MATH  Google Scholar 

  2. Hu, X.Y., Zhou, X.Z.: Inverse Eigenvalue Problems for Tridiagonal Symmetric Matrices. J. Journal on Numerical Methods and Computer Applications 17(2), 150–156 (1996)

    MathSciNet  Google Scholar 

  3. Liao, A.P., Zhang, L., Hu, X.Y.: The Conditions of Existing a Unique Solution for Inverse Eigenproblems of Tridiagonal Symmetric Matrices. J. Journal on Numerical Methods and Computer Applications 21(2), 102–111 (2000)

    Google Scholar 

  4. Liao, A.P., Bai, Z.Z.: On the Construction of Positive Definite Jacobian Matrix from Two Eignpairs. J. Journal of Numerical Methods and Computer Applications 23(2), 131–138 (2002)

    MathSciNet  Google Scholar 

  5. Li, Z.Z.: On the Construction of Positive Definite Jacobian Matrix from Therer Eignpairs. J. Acta Mathematicae Applicatae Sinica 28(2), 333–340 (2005)

    Google Scholar 

  6. Zhou, X.Z., Hu, X.Y.: The Real Symmetric Five-Diagonal Matrix and Inverse Eigenproblems for It. J. Journal of Hunan University 23(1), 9–14 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Wang, Z.S.: Inverse Eigenvalue Problem for Real Symmetric Five-Diagonal Matrix. J. Numerical Mathematics A Journal of Chinese Universities 4, 366–376 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Sun, H.M., Zhao, C.S.: An Algorithm and Application For Inverse Eigenvalue Problem of 5-Diagonal Matrix. J. Chinese Journal of Computational Physics 14(4,5), 631–634 (1997)

    MathSciNet  Google Scholar 

  9. Wang, Z.S.: Inverse eigenvalue problems for real symmetric banded matrix. J. Applied Mathematics A Journal of Chinese Universities 19(4), 451–459 (2004)

    MATH  Google Scholar 

  10. Cai, Q., Fang, F.: The Conditions for the Solvability of Inverse Problems of Two Matrixes. J. Nanjing Audit University Journal 2(4), 66–69 (2005)

    Google Scholar 

  11. Cai, Q., Gong, W.Q., Sun, A.M.: Inverse Eigenvalue Problem for Real Symetric Five-diagonal Matrix. J. College Mathematics 21(6), 66–70 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, L., Li, P., Gong, D., Li, L., Yang, A., Qu, J. (2010). Inverse Eigenvalue Problem for Real Symmetric Five-Diagonal Matrix. In: Zhu, R., Zhang, Y., Liu, B., Liu, C. (eds) Information Computing and Applications. ICICA 2010. Communications in Computer and Information Science, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16339-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16339-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16338-8

  • Online ISBN: 978-3-642-16339-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics