Abstract
This paper presents a complete methodology for designing practical and highly-undetectable stegosystems for real digital media. The main design principle is to minimize a suitably-defined distortion by means of efficient coding algorithm. The distortion is defined as a weighted difference of extended state-of-the-art feature vectors already used in steganalysis. This allows us to “preserve” the model used by steganalyst and thus be undetectable even for large payloads. This framework can be efficiently implemented even when the dimensionality of the feature set used by the embedder is larger than 107. The high dimensional model is necessary to avoid known security weaknesses. Although high-dimensional models might be problem in steganalysis, we explain, why they are acceptable in steganography. As an example, we introduce HUGO, a new embedding algorithm for spatial-domain digital images and we contrast its performance with LSB matching. On the BOWS2 image database and in contrast with LSB matching, HUGO allows the embedder to hide 7× longer message with the same level of security level.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, R.: Stretching the limits of steganography. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 39–48. Springer, Heidelberg (1996)
Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)
Cancelli, G., Barni, M., Menegaz, G.: Mpsteg: hiding a message in the matching pursuit domain. In: Proceedings SPIE, EI, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, CA, vol. 6072, p. 60720P (2006)
Crandall, R.: Some notes on steganography. Steganography Mailing List (1998), http://os.inf.tu-dresden.de/~westfeld/crandall.pdf
Filler, T., Fridrich, J.: Fisher information determines capacity of ε-secure steganography. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 31–47. Springer, Heidelberg (2009)
Filler, T., Fridrich, J., Judas, J.: Minimizing embedding impact in steganography using Trellis-Coded Quantization. In: Proceedings SPIE, EI, Media Forensics and Security XII, San Jose, CA, January 18-20, p. 05-1–05-14 (2010)
Filler, T., Ker, A.D., Fridrich, J.: The Square Root Law of steganographic capacity for Markov covers. In: Proceedings SPIE, EI, Security and Forensics of Multimedia XI, San Jose, CA, January 18-21, vol. 7254, p. 08-1–08-11 (2009)
Franz, E.: Steganography preserving statistical properties. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 278–294. Springer, Heidelberg (2002)
Franz, E., Rönisch, S., Bartel, R.: Improved embedding based on a set of cover images. In: Proceedings of the 11th ACM Multimedia & Security Workshop, Princeton, NJ, September 7-8, pp. 141–150 (2009)
Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)
Fridrich, J., Filler, T.: Practical methods for minimizing embedding impact in steganography. In: Proceedings SPIE, EI, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, January 29-February 1, vol. 6505, pp. 2–3 (2007)
Fridrich, J., Goljan, M., Soukal, D.: Perturbed quantization steganography. ACM Multimedia System Journal 11(2), 98–107 (2005)
Fridrich, J., Pevný, T., Kodovský, J.: Statistically undetectable JPEG steganography: Dead ends, challenges, and opportunities. In: Proceedings of the 9th ACM Multimedia & Security Workshop, Dallas, TX, September 20-21, pp. 3–14 (2007)
Goljan, M., Fridrich, J., Holotyak, T.: New blind steganalysis and its implications. In: Proceedings SPIE, EI, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, CA, vol. 6072, pp. 1–13 (2006)
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006)
Harmsen, J.J., Pearlman, W.A.: Steganalysis of additive noise modelable information hiding. In: Proceedings SPIE, EI, Security and Watermarking of Multimedia Contents V, Santa Clara, CA, January 21-24, vol. 5020, pp. 131–142 (2003)
Ker, A.D., Böhme, R.: Revisiting weighted stego-image steganalysis. In: Proceedings SPIE, EI, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, San Jose, CA, January 27-31, vol. 6819, p. 5-1–5-17 (2008)
Ker, A.D., Pevný, T., Kodovský, J., Fridrich, J.: The Square Root Law of steganographic capacity. In: Proceedings of the 10th ACM Multimedia & Security Workshop, Oxford, UK, September 22-23, pp. 107–116 (2008)
Kim, Y., Duric, Z., Richards, D.: Modified matrix encoding technique for minimal distortion steganography. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 314–327. Springer, Heidelberg (2006)
Kodovský, J., Fridrich, J.: On completeness of feature spaces in blind steganalysis. In: Proceedings of the 10th ACM Multimedia & Security Workshop, Oxford, UK, September 22-23, pp. 123–132 (2008)
Kodovský, J., Pevný, T., Fridrich, J.: Modern steganalysis can detect YASS. In: Proceedings SPIE, EI, Media Forensics and Security XII, San Jose, CA (2010)
Pevný, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. In: Proceedings of the 11th ACM Multimedia & Security Workshop, Princeton, NJ, September 7-8, pp. 75–84 (2009)
Pevný, T., Fridrich, J.: Benchmarking for steganography. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 251–267. Springer, Heidelberg (2008)
Ryabko, B., Ryabko, D.: Asymptotically optimal perfect steganographic systems. Problems of Information Transmission 45(2), 184–190 (2009)
Sachnev, V., Kim, H.J., Zhang, R.: Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding. In: Proceedings of the 11th ACM Multimedia & Security Workshop, September 7-8, pp. 131–140 (2009)
Sallee, P.: Model-based steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2003)
Ullerich, C., Westfeld, A.: Weaknesses of MB2. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 127–142. Springer, Heidelberg (2008)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Wang, Y., Moulin, P.: Perfectly secure steganography: Capacity, error exponents, and code constructions. IEEE Transactions on Information Theory, Special Issue on Security 55(6), 2706–2722 (2008)
Westfeld, A.: High capacity despite better steganalysis (F5 – a steganographic algorithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)
Zhang, X., Zhang, W., Wang, S.: Efficient double-layered steganographic embedding. Electronics Letters 43, 482–483 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pevný, T., Filler, T., Bas, P. (2010). Using High-Dimensional Image Models to Perform Highly Undetectable Steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds) Information Hiding. IH 2010. Lecture Notes in Computer Science, vol 6387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16435-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-16435-4_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16434-7
Online ISBN: 978-3-642-16435-4
eBook Packages: Computer ScienceComputer Science (R0)