Abstract
The Exponential Challenge Response (XRC) and Dual Exponential Challenge Response (DCR) signature schemes are the building blocks of the HMQV protocol. We propose a complementary analysis of these schemes; on the basis of this analysis we show how impersonation and man in the middle attacks can be mounted against HMQV, when some session specific information leakages happen. We define the Full Exponential Challenge Response (FXRC) and Full Dual Exponential Challenge Response (FDCR) signature schemes; using these schemes we propose the Fully Hashed MQV protocol, which preserves the performance and security attributes of the (H)MQV protocols and resists the attacks we present.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basin, D., Cremers, C.: From Dolev–Yao to Strong Adaptive Corruption: Analyzing Security in the Presence of Compromising Adversaries. Cryptology ePrint Archive, Report 2009/079 (2009)
Canetti, R., Krawczyk, H.: Analysis of Key–Exchange Protocols and Their Use for Building Secure Channels. Cryptology ePrint Archive, Report 2001/040 (2001)
Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving Discrete Logarithms from Partial Knowledge of the Key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007)
Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2003)
Krawczyk, H.: HMQV: A Hight Performance Secure Diffie–Hellman Protocol. Cryptology ePrint Archive, Report 2005/176 (2005)
LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)
Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An Efficient Protocol for Authenticated Key Agreement. Designs, Codes and Cryptography 28(2), 119–134 (2003)
Maurer, U.M., Wolf, S.: Diffie–Hellman Oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)
Menezes, A.: Another Look at HMQV. Journal of Mathematical Cryptology 1, 148–175 (2007)
Menezes, A., Ustaoglu, B.: On the Importance of Public-Key Validation in the MQV and HMQV Key Agreement Protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006)
Okamoto, T., Pointcheval, D.: The Gap–Problems: A new class of problems for the security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)
Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13, 361–396 (2000)
Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. Journal of Cryptology 13, 437–447 (2000)
Sarr, A.P., Elbaz–Vincent, P., Bajard, J.C.: A Secure and Efficient Authenticated Diffie–Hellman Protocol. Cryptology ePrint Archive, Report 2009/408 (2009)
Teske, E.: Square-root Algorithms for the Discrete Logarithm Problem (A survey). In: Public Key Cryptography and Computational Number Theory, pp. 283–301. Walter de Gruyter, Berlin (2001)
Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Designs, Codes and Cryptography 46(3), 329–342 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sarr, A.P., Elbaz-Vincent, P., Bajard, JC. (2010). A Secure and Efficient Authenticated Diffie–Hellman Protocol. In: Martinelli, F., Preneel, B. (eds) Public Key Infrastructures, Services and Applications. EuroPKI 2009. Lecture Notes in Computer Science, vol 6391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16441-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-16441-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16440-8
Online ISBN: 978-3-642-16441-5
eBook Packages: Computer ScienceComputer Science (R0)