Skip to main content

Medical Imaging: A Review

  • Conference paper
Security-Enriched Urban Computing and Smart Grid (SUComS 2010)

Abstract

The rapid progress of medical science and the invention of various medicines have benefited mankind and the whole civilization. Modern science also has been doing wonders in the surgical field. But, the proper and correct diagnosis of diseases is the primary necessity before the treatment. The more sophisticate the bio-instruments are, better diagnosis will be possible. The medical images plays an important role in clinical diagnosis and therapy of doctor and teaching and researching etc. Medical imaging is often thought of as a way to represent anatomical structures of the body with the help of X-ray computed tomography and magnetic resonance imaging. But often it is more useful for physiologic function rather than anatomy. With the growth of computer and image technology medical imaging has greatly influenced medical field. As the quality of medical imaging affects diagnosis the medical image processing has become a hotspot and the clinical applications wanting to store and retrieve images for future purpose needs some convenient process to store those images in details. This paper is a tutorial review of the medical image processing and repository techniques appeared in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Webb, S.: The Physics of Medical Imaging Medical Science Series, New York (1988)

    Google Scholar 

  2. http://en.wikipedia.org/wiki/Medical_imaging (visited on 01.04.2008)

  3. http://www.lancs.ac.uk/ (visited on 01.04.2008)

  4. Zaidi, H.: Medical Imaging: Current Status and Future Perspective, Division of Nuclear Medicine, Geneva University Hospital

    Google Scholar 

  5. Tian, D.-Z., Ha, M.-H.: Applications of Wavelet Transform in Medical Image Processing, Faculty of Mathematics and Computer Science, Hebei university, Baoding 071002

    Google Scholar 

  6. Bradie, B.: Wavelet packet-based compression of signal lead ECG J. IEEE Trans. BME 43(1), 49–60 (1994)

    Google Scholar 

  7. Kaimei, Z., Shengchen, y.: Semi-lossless compression algorithm of ECG signal based on wavelet transform. Shandong Joumal of Biomedical Engineering 22(2), 8–10 (2003)

    Google Scholar 

  8. Kalayci, T., Ozadmar, 0.: Wavelet processing for automated neural network detection of EEG spikes Jl. IEEE Eng. in Med. and Biol. 2, 160–166 (1995)

    Article  Google Scholar 

  9. Weidong, Z., Yingyuan, L.: EEG spikes detection and denoising methods based on wavelet transform. Chinese Journal of Medical Physics 18(4), 208–210 (2001)

    Google Scholar 

  10. Meyer, E.G., Averbuch, A.Z., Stmmberg, J.O.: Fast adptive wavelet packet image compression. IEEE Trans. On Image processing 9(5), 792–800 (2000)

    Article  Google Scholar 

  11. Xiong, Z., Ramchandran, K., Orchard, M.T.: Waveletpacket image coding using space-frequency quantization. IEEE Trans. On Image processing 7(6), 892–898 (1998)

    Article  Google Scholar 

  12. Tolba, A.S.: Wavelet packet compression of Medical images. Digital Signal Processing 12, 441–470 (2002)

    Article  Google Scholar 

  13. ye, Y., Zongying, O.: Method of edge detection. Letters 21, 447–462 (2000); Based on wavelet transform and fuzzy algorithm. Journal of Dalian University of Technology 42(4), 504–508 (2002)

    Google Scholar 

  14. Shman, R., Qler, J.M., Pianykh, O.S.: A fast and accurate method to register medical images using Wavelet Modulus Maxima. Pattem Recognition Letters 21, 447–462 (2000)

    Article  Google Scholar 

  15. Terman, D., Wang, D.L.: Global competition and local cooperation in a network of neural oscillators. Physics D 81, 148–176 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, D.L., Terman, D.: Locally excitatory globally inhibitory oscillator networks. IEEE Trans. Neural Networks 6, 283–286 (1995)

    Article  Google Scholar 

  17. Wang, D.L., Terman, D.: Image segmentation based on oscillatory correlation. Neural Comput. 9, 805–836 (1997) (for errata see Neural Comput. 9, 1623–1626 (1997)

    Article  Google Scholar 

  18. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Graph. Image Processing 29, 100–132 (1985)

    Article  Google Scholar 

  19. Matani, A., Ban, Y., Oshiro, O., Chihara, K.: A system for superimposing medical image within the subject. Nara Institute of Science and Technology

    Google Scholar 

  20. Chandrashekar, N., Gautam, S.M., Shivakumar, K.R., Srinivas, K.S., Vijayananda, J.: COTS-Like Generic Medical Image Repository

    Google Scholar 

  21. A Process for COTS Software Product Evaluation CMU/SEI-2003-TR 017 ESC-TR-2003-017 Santiago Comella-Dorda et al, http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03tr017.pdf (visited on 01.04.2008)

  22. Jaccheri, L., Sørensen, C.-F., Inge, A.: COTS Products Characterization Marco Torchiano, Wang Department of Computer and Information Science (IDI), Norwegian University of Science and Technology (NTNU) Sem Saelands vei 7-9, N-7491 Trondheim, Norway Phone: +47 735 94489, Fax: +47 735 94466 {Marco, letizia, carlfrs, alfw}@idi.ntnu.no, http://www.idi.ntnu.no/grupper/su/publ/marco.SEKE2002.pdf (visited on 01.04.2008)

  23. Florea, E., Barbu, E., Rogozan, A., Bensrhair, A.: VBuzuloiu LITIS Laboratory, INSA de Rouen 1060 Av. de l’Universite. St. Etienne du Rouvray, France LAPI Laboratory Politehnica University Bucharest 1-3 Iuliu Maniu Blvd, Bucharest, Romania, Medical image catagorization using a texture based symbolic description

    Google Scholar 

  24. Kaufman, L.: Finding groups in data: an introduction to cluster analysis. In: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Chapter  Google Scholar 

  25. Stanfill, C., Waltz, D.: Toward memory based reasoning. Communications of the ACM 29(12), 1213–1228

    Google Scholar 

  26. Gersho, A., Gray, M.R.: Vector quantization and signal compression. Kluwer Academic Publishers, Boston (1992)

    Book  MATH  Google Scholar 

  27. Bajaj, C.L., Ihm, I., Park, S.: 3D RGB image compression for interactive applications. ACM Transactions on Graphics 20(1), 10–38 (2001)

    Article  Google Scholar 

  28. Udupa, J.K., Herman, G.T.: 3D Imaging in Medicine. CRC Press, Boca Raton (1999); Proceedings of the 19th IEEE Symposium on Computer-Based Medical Systems (CBMS 2006) 0-7695-2517-1/06 $20.00 © 2006 IEEE

    Google Scholar 

  29. http://www.hms.harvard.edu/research/brain/atlas.html (visited on 01.04.2008)

  30. http://www.loni.ucla.edu/Research/Atlases/Data/monkey/MonkeyAtlasViewer.html (visited on 01.04.2008)

  31. Gustafson, C., Tretiak, O., Bertrand, L., Nissanov, J.: Design and implementation of software for assembly and browsing of 3D brain atlases. Computer Methods and Programs in Biomedicine 74(1), 53–61 (2004)

    Article  Google Scholar 

  32. 3D Slicer, http://www.slicer.org/ (visited on 01.04.2008)

  33. Liu, D., Hua, K.A., Sugaya, K.: A Framework for Web-based Interactive Applications of High-Resolution 3D Medical Image Data

    Google Scholar 

  34. Aguirre, A., Cabrera, S.D., Lucero, A., Vidal Jr., E., Gerdau, K.: Compression of Three-Dimensional Medical Image Data based on JPEG 2000. In: Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems, pp. 116–121 (2004)

    Google Scholar 

  35. Tang, X., Pearlman, W.A.: Three-Dimensional Wavelet-Based Compression of Hyperspectral Images, Hyperspectral Data Compression. Kluwer Academic Publishers, Dordrecht (2005)

    Google Scholar 

  36. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the clustering properties of the Hilbert space filling curve. IEEE Transactions on Knowledge and Data Engineering 13(1), 124–141 (2001)

    Article  Google Scholar 

  37. Sagan, H.: Space-Filling Curves. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  38. Wallis, J.R., Miller, M.M., Miller, T.R., Vreeland, T.H.: An Internet-based nuclear medicine teaching file. J. Nucl. Med. 36, 1520–1527 (1995)

    Google Scholar 

  39. Parker, J.A., Wallis, J.W., Halama, J.R., Brown, C.V., Ceadduck, T.D., Graham, M.M., Wu, E., Wagenaar, D.J., Mammone, G.L., Greenes, R.A., Holman, B.L.: Collaboration using Internet for the development of case-based teaching files: Report of the Computer and Instrumentation Council Internet Focus Group. J. Nucl. Med. 37, 178–184 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganguly, D., Chakraborty, S., Balitanas, M., Kim, Th. (2010). Medical Imaging: A Review. In: Kim, Th., Stoica, A., Chang, RS. (eds) Security-Enriched Urban Computing and Smart Grid. SUComS 2010. Communications in Computer and Information Science, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16444-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16444-6_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16443-9

  • Online ISBN: 978-3-642-16444-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics