Skip to main content

Resource Provisioning in SLA-Based Cluster Computing

  • Conference paper
Job Scheduling Strategies for Parallel Processing (JSSPP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6253))

Included in the following conference series:

  • 689 Accesses

Abstract

Cluster computing is excellent for parallel computation. It has become increasingly popular. In cluster computing, a service level agreement (SLA) is a set of quality of services (QoS) and a fee agreed between a customer and an application service provider. It plays an important role in an e-business application. An application service provider uses a set of cluster computing resources to support e-business applications subject to an SLA. In this paper, the QoS includes percentile response time and cluster utilization. We present an approach for resource provisioning in such an environment that minimizes the total cost of cluster computing resources used by an application service provider for an e-business application that often requires parallel computation for high service performance, availability, and reliability while satisfying a QoS and a fee negotiated between a customer and the application service provider. Simulation experiments demonstrate the applicability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aron, M., Sanders, D., Druschel, P., Zwaenepoel, W.: Scalable content-aware request distribution in cluster-based network servers. In: Proceedings of USENIX 2000 Technical Conference (June 2000)

    Google Scholar 

  2. Lucke, R.: Buidling Clustered Liux Systems. Prentice-Hall, Englewood Cliffs (2005)

    Google Scholar 

  3. Bucur, A.: Performance analysis of processor co-allocation in multicluster systems, PhD Thesis, Delft University of Technology, Delft, The Netherlands (2004)

    Google Scholar 

  4. Bucur, A., Epema, D.: Local versus global schedulers with processor co-allocation in multicluster systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 184–204. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Chang, J.: Processor performance: Update 1, http://SQL-Server-Performance.com

  6. Cook, S.: The complexity of theorem proving procedures. In: Proceedings of the Third Annual ACM Symposium on the Theory of Computing, pp. 151–158. ACM, New York (1971)

    Google Scholar 

  7. Du, J., Leung, T.: Complexity of scheduling parallel task systems. SIAM Journal on Discrete Mathematics 2, 473–487 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feitelson, D., Rudolph, L., Shwiegelshohn, U.: Parallel job scheduling: a status report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Heath, T., Diniz, B., Carrera, E.V., Meira Jr., W., Bianchini, R.: Self-configuring heterogeneous server clusters. In: Proceedings of the Workshop on Compilers and Operating Systems for Low Power (September 2003)

    Google Scholar 

  11. Jones, W.: Improving parallel job scheduling performance in multi-clusters through selective job co-allocation. PhD dissertation, Clemson University, Clemson, South Carolina, USA (2005)

    Google Scholar 

  12. Liu, C., Yang, L., Foster, I., Angulo, D.: Design and evaluation of a resource selection framework for grid applications. In: Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC 2002), Washington, DC, USA, p. 63. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  13. Levner, E.: Multiprocessor Scheduling: Theory and Applications. I-Tech Education and Publishing, Vienna (December 2007)

    Google Scholar 

  14. Ngubiri, J., Vliet, M.: Group-wise performance evaluation of processor co-allocation in multi-cluster systems. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 24–36. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Papadimitriou, C.: Computational Complexity, 1st edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  16. Naik, V., Liu, C., Yang, L., Wagner, J.: On-line resource matching in a heterogeneous grid environment. In: Proceedings of the International Symposium on Cluster Computing and the Grid (CCGrid 2005). IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  17. Shin, M., Chong, S., Rhee, I.: Dual-resource TCP/AQM for processing-constrained networks. In: Proceedings of the IEEE INFOCOM (April 2006)

    Google Scholar 

  18. Xiong, K.: Resource Optimization and Security in Distributed Computing. Ph.D. Dissertation, North Carolina State University, USA (December 2007)

    Google Scholar 

  19. Yom-Tov, E., Aridor, Y.: A self-optiimized job scheduler for heterogeneous server clusters. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 169–187. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Bouillet, E., Mitra, D., Ramakrishnan, K.: The structure and management of service level agreements in networks. IEEE Journal on Selected Areas in Communications 20(4), 691–699 (2002)

    Article  Google Scholar 

  21. Chassot, C., Garcia, F., Auriol, G., Lozes, A., Lochin, E., Anelli, P.: Performance Analysis for an IP Differentiated Services Network. In: Proceedings of IEEE Intnernational Conference on Communication (ICC 2002), pp. 976–980 (2002)

    Google Scholar 

  22. Cao, Z., Zegura, E.: Utility max-min: An application-oriented bandwidth allocaton scheme. In: Proceedings of the IEEE INFOCOM (March 1999)

    Google Scholar 

  23. Gaver, D., Handley, M., Padhye, J., Widmer, J.: Observing stochastic processes, and approximate transform inversion. Operation Research 14(3) (1966)

    Google Scholar 

  24. Graf, U.: Applied Laplace Transforms and z-Transforms for Scientists and Engineers. Birkhauser Verlag, Basel (2004)

    Book  MATH  Google Scholar 

  25. INTERNAP, The INTERNAP route optimization solution: executive summary, http://www.internap.com/learning/whitepapers

  26. Jacob, B., et al.: On Demand Operating Environment: Managing the Infrastructure, IBM Redbooks (June 2005)

    Google Scholar 

  27. Liao, R., Campbell, A.: Dynamic core provisioning for quantitative differentiated services. IEEE/ACM Transactions on Networking 12(3), 429–442 (2005)

    Article  Google Scholar 

  28. Martin, J., Nilsson, A.: On service level agreements for IP networks. In: Proceedings of the IEEE INFOCOM (June 2002)

    Google Scholar 

  29. Menasce, D., Casalicchio, E.: A framework for resource allocation in grid computing. In: Proceedings of the MASCOTS (October 2004)

    Google Scholar 

  30. Paxson, V.: End-to-end Internet packet dynamics. In: Proceedings of the ACM SIGCOMM (1997)

    Google Scholar 

  31. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: a simple model and its empirical validation. In: Proceedings of the ACM SIGCOMM (2004)

    Google Scholar 

  32. Perros, H.: Queueing Network with Blocking, Exact and Approximate Solutions. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  33. Piessens, R.: Gaussian quadrature formulas for the numerical integration of Bromwich’s integral and the inversion of the Laplace transform. Journal of Engineering Mathematics 5(1) (1971)

    Google Scholar 

  34. Stehfest, H.: Algorithm 386, numerical inversion of Laplace transforms. Communcations of the ACM 13(1) (January 1970)

    Google Scholar 

  35. Xiao, X., Ni, L.M.: Internet QoS: a big picture. IEEE Network (March/April 1999)

    Google Scholar 

  36. Zandt, T.: How to fit a response time distribution, http://citeseer.ist.psu.edu/552295.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiong, K., Suh, S. (2010). Resource Provisioning in SLA-Based Cluster Computing. In: Frachtenberg, E., Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2010. Lecture Notes in Computer Science, vol 6253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16505-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16505-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16504-7

  • Online ISBN: 978-3-642-16505-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics