Abstract
Cluster computing is excellent for parallel computation. It has become increasingly popular. In cluster computing, a service level agreement (SLA) is a set of quality of services (QoS) and a fee agreed between a customer and an application service provider. It plays an important role in an e-business application. An application service provider uses a set of cluster computing resources to support e-business applications subject to an SLA. In this paper, the QoS includes percentile response time and cluster utilization. We present an approach for resource provisioning in such an environment that minimizes the total cost of cluster computing resources used by an application service provider for an e-business application that often requires parallel computation for high service performance, availability, and reliability while satisfying a QoS and a fee negotiated between a customer and the application service provider. Simulation experiments demonstrate the applicability of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aron, M., Sanders, D., Druschel, P., Zwaenepoel, W.: Scalable content-aware request distribution in cluster-based network servers. In: Proceedings of USENIX 2000 Technical Conference (June 2000)
Lucke, R.: Buidling Clustered Liux Systems. Prentice-Hall, Englewood Cliffs (2005)
Bucur, A.: Performance analysis of processor co-allocation in multicluster systems, PhD Thesis, Delft University of Technology, Delft, The Netherlands (2004)
Bucur, A., Epema, D.: Local versus global schedulers with processor co-allocation in multicluster systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 184–204. Springer, Heidelberg (2002)
Chang, J.: Processor performance: Update 1, http://SQL-Server-Performance.com
Cook, S.: The complexity of theorem proving procedures. In: Proceedings of the Third Annual ACM Symposium on the Theory of Computing, pp. 151–158. ACM, New York (1971)
Du, J., Leung, T.: Complexity of scheduling parallel task systems. SIAM Journal on Discrete Mathematics 2, 473–487 (1989)
Feitelson, D., Rudolph, L., Shwiegelshohn, U.: Parallel job scheduling: a status report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005)
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)
Heath, T., Diniz, B., Carrera, E.V., Meira Jr., W., Bianchini, R.: Self-configuring heterogeneous server clusters. In: Proceedings of the Workshop on Compilers and Operating Systems for Low Power (September 2003)
Jones, W.: Improving parallel job scheduling performance in multi-clusters through selective job co-allocation. PhD dissertation, Clemson University, Clemson, South Carolina, USA (2005)
Liu, C., Yang, L., Foster, I., Angulo, D.: Design and evaluation of a resource selection framework for grid applications. In: Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing HPDC-11 2002 (HPDC 2002), Washington, DC, USA, p. 63. IEEE Computer Society, Los Alamitos (2002)
Levner, E.: Multiprocessor Scheduling: Theory and Applications. I-Tech Education and Publishing, Vienna (December 2007)
Ngubiri, J., Vliet, M.: Group-wise performance evaluation of processor co-allocation in multi-cluster systems. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 24–36. Springer, Heidelberg (2008)
Papadimitriou, C.: Computational Complexity, 1st edn. Addison-Wesley, Reading (1994)
Naik, V., Liu, C., Yang, L., Wagner, J.: On-line resource matching in a heterogeneous grid environment. In: Proceedings of the International Symposium on Cluster Computing and the Grid (CCGrid 2005). IEEE Computer Society, Los Alamitos (2005)
Shin, M., Chong, S., Rhee, I.: Dual-resource TCP/AQM for processing-constrained networks. In: Proceedings of the IEEE INFOCOM (April 2006)
Xiong, K.: Resource Optimization and Security in Distributed Computing. Ph.D. Dissertation, North Carolina State University, USA (December 2007)
Yom-Tov, E., Aridor, Y.: A self-optiimized job scheduler for heterogeneous server clusters. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 169–187. Springer, Heidelberg (2008)
Bouillet, E., Mitra, D., Ramakrishnan, K.: The structure and management of service level agreements in networks. IEEE Journal on Selected Areas in Communications 20(4), 691–699 (2002)
Chassot, C., Garcia, F., Auriol, G., Lozes, A., Lochin, E., Anelli, P.: Performance Analysis for an IP Differentiated Services Network. In: Proceedings of IEEE Intnernational Conference on Communication (ICC 2002), pp. 976–980 (2002)
Cao, Z., Zegura, E.: Utility max-min: An application-oriented bandwidth allocaton scheme. In: Proceedings of the IEEE INFOCOM (March 1999)
Gaver, D., Handley, M., Padhye, J., Widmer, J.: Observing stochastic processes, and approximate transform inversion. Operation Research 14(3) (1966)
Graf, U.: Applied Laplace Transforms and z-Transforms for Scientists and Engineers. Birkhauser Verlag, Basel (2004)
INTERNAP, The INTERNAP route optimization solution: executive summary, http://www.internap.com/learning/whitepapers
Jacob, B., et al.: On Demand Operating Environment: Managing the Infrastructure, IBM Redbooks (June 2005)
Liao, R., Campbell, A.: Dynamic core provisioning for quantitative differentiated services. IEEE/ACM Transactions on Networking 12(3), 429–442 (2005)
Martin, J., Nilsson, A.: On service level agreements for IP networks. In: Proceedings of the IEEE INFOCOM (June 2002)
Menasce, D., Casalicchio, E.: A framework for resource allocation in grid computing. In: Proceedings of the MASCOTS (October 2004)
Paxson, V.: End-to-end Internet packet dynamics. In: Proceedings of the ACM SIGCOMM (1997)
Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: a simple model and its empirical validation. In: Proceedings of the ACM SIGCOMM (2004)
Perros, H.: Queueing Network with Blocking, Exact and Approximate Solutions. Oxford University Press, Oxford (1994)
Piessens, R.: Gaussian quadrature formulas for the numerical integration of Bromwich’s integral and the inversion of the Laplace transform. Journal of Engineering Mathematics 5(1) (1971)
Stehfest, H.: Algorithm 386, numerical inversion of Laplace transforms. Communcations of the ACM 13(1) (January 1970)
Xiao, X., Ni, L.M.: Internet QoS: a big picture. IEEE Network (March/April 1999)
Zandt, T.: How to fit a response time distribution, http://citeseer.ist.psu.edu/552295.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xiong, K., Suh, S. (2010). Resource Provisioning in SLA-Based Cluster Computing. In: Frachtenberg, E., Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2010. Lecture Notes in Computer Science, vol 6253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16505-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-16505-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16504-7
Online ISBN: 978-3-642-16505-4
eBook Packages: Computer ScienceComputer Science (R0)