Abstract
Virtualization technology has introduced new ways for managing IT infrastructure. The flexible deployment of applications through self-contained virtual machine images has removed the barriers for multiplexing, suspending and migrating applications with their entire execution environment, allowing for a more efficient use of the infrastructure. These developments have given rise to an important challenge regarding the optimal scheduling of virtual machine workloads. In this paper, we specifically address the VM scheduling problem in which workloads that require guaranteed levels of CPU performance are mixed with workloads that do not require such guarantees. We introduce a framework to analyze this scheduling problem and evaluate to what extent such mixed service delivery is beneficial for a provider of virtualized IT infrastructure. Traditionally providers offer IT resources under a guaranteed and fixed performance profile, which can lead to underutilization. The findings of our simulation study show that through proper tuning of a limited set of parameters, the proposed scheduling algorithm allows for a significant increase in utilization without sacrificing on performance dependability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst. Rev. 37(5), 164–177 (2003)
Weiss, A.: Computing in the clouds. NetWorker 11(4), 16–25 (2007)
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley (2009)
Amazon: Elastic compute cloud, http://aws.amazon.com/ec2 (2008) (accessed 22-12-08)
Amazon Web Services LLC: Amazon ec2 spot instances (2009) (accessed December 23, 2009)
Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Virtual infrastructure management in private and hybrid clouds. IEEE Internet Computing 13(5), 14–22 (2009)
Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: The Eucalyptus open-source cloud-computing system. In: 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID), Washington, DC, USA, pp. 124–131. IEEE, Los Alamitos (2009)
Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using virtual machines. In: HPDC 2008: Proceedings of the 17th International Symposium on High Performance Distributed Computing, pp. 87–96 (2008)
Abrahao, B., Zhang, A.: Characterizing application workloads on cpu utilization for utility computing. Technical Report HPL-2004-157, Hewllet-Packard Labs (2004)
Feitelson, D.G., Jette, M.A.: Improved utilization and responsiveness with gang scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 238–261. Springer, Heidelberg (1997)
Feitelson, D.G., Weil, A.: Utilization and predictability in scheduling the ibm sp2 with backfilling. In: IPPS 1998: Proceedings of the 12th. International Parallel Processing Symposium on International Parallel Processing Symposium, Washington, DC, USA, p. 542. IEEE Computer Society, Los Alamitos (1998)
Mualem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Transactions on Parallel and Distributed Systems 12, 529–543 (2001)
Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst. 18(6), 789–803 (2007)
Verboven, S., Hellinckx, P., Arickx, F., Broeckhove, J.: Runtime prediction based grid scheduling of parameter sweep jobs. In: APSCC 2008: Proceedings of the 2008 IEEE Asia-Pacific Services Computing Conference, Washington, DC, USA, pp. 33–38. IEEE Computer Society, Los Alamitos (2008)
Smith, W., Foster, I.: Using run-time predictions to estimate queue wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999)
Sulistio, A., Kim, K.H., Buyya, R.: Managing cancellations and no-shows of reservations with overbooking to increase resource revenue. In: CCGRID 2008: Proceedings of the 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid, Washington, DC, USA, pp. 267–276. IEEE Computer Society, Los Alamitos (2008)
Urgaonkar, B., Urgaonkar, B., Shenoy, P., Shenoy, P., Roscoe, T., Roscoe, T.: Resource overbooking and application profiling in shared hosting platforms, pp. 239–254 (2002)
Cherkasova, L., Gupta, D., Ryabinkin, E., Kurakin, R., Dobretsov, V., Vahdat, A.: Optimizing grid site manager performance with virtual machines. In: WORLDS 2006: Proceedings of the 3rd conference on USENIX Workshop on Real, Large Distributed Systems, Berkeley, CA, USA, p. 5. USENIX Association (2006)
Birkenheuer, G., Brinkmann, A., Karl, H.: The gain of overbooking. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2009. LNCS, vol. 5798, pp. 80–100. Springer, Heidelberg (2009)
Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three cpu schedulers in Xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42–51 (2007)
VMware: Performance best practices for vmware vsphere 4.0 (2009)
Microsoft: Virtualization reality: Why microsoft virtualization solutions deliver value when compared to vmware (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Verboven, S., Vanmechelen, K., Broeckhove, J. (2010). Multiplexing Low and High QoS Workloads in Virtual Environments. In: Frachtenberg, E., Schwiegelshohn, U. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2010. Lecture Notes in Computer Science, vol 6253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16505-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-16505-4_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16504-7
Online ISBN: 978-3-642-16505-4
eBook Packages: Computer ScienceComputer Science (R0)