Skip to main content

Discovery and Correctness of Schema Mapping Transformations

  • Chapter
  • First Online:
Schema Matching and Mapping

Part of the book series: Data-Centric Systems and Applications ((DCSA))

Abstract

Schema mapping is becoming pervasive in all data transformation, exchange, and integration tasks. It brings to the surface the problem of differences and mismatches between heterogeneous formats and models, respectively, used in source and target databases to be mapped one to another. In this chapter, we start by describing the problem of schema mapping, its background, and technical implications. Then, we outline the early schema mapping systems, along with the new generation of schema mapping tools. Moving from the former to the latter entailed a dramatic change in the performance of mapping generation algorithms. Finally, we conclude the chapter by revisiting the query answering techniques allowed by the mappings, and by discussing useful applications and future and current developments of schema mapping tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We refer to naive chase rather than to the standard chase used in Fagin et al. (2005a), since the naive chase is much simpler and rather straightforward to implement in SQL. Such chase is sometimes calles oblivious chase, e.g., in Marnette (2009).

  2. 2.

    While Skolem terms are usually nested, for the sake of simplicity here we only consider flat terms.

  3. 3.

    We do not distinguish here between Σ st and Σ t and consider Σ as a set of generic constraints.

References

  1. Abiteboul S, Duschka OM (1998) Complexity of answering queries using materialized views. In: PODS. ACM, NY, pp 254–263

    Google Scholar 

  2. Abiteboul S, Cluet S, Milo T (1997) Correspondence and translation for heterogeneous data. In: ICDT, Delphi, Greece. Springer, London, pp 351–363

    Google Scholar 

  3. Abu-Hamdeh R, Cordy J, Martin T (1994) Schema translation using structural transformation. In: CASCON. IBM Press, pp 202–215

    Google Scholar 

  4. Amano S, Libkin L, Murlak F (2009) XML schema mappings. In: PODS. ACM, NY, pp 33–42

    Google Scholar 

  5. An Y, Borgida A, Miller R, Mylopoulos J (2007) In: Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, April 15–20, 2007, The Marmara Hotel, Istanbul, Turkey

    Google Scholar 

  6. Arenas M, Libkin L (2008) XML data exchange: Consistency and query answering. J ACM 55(2):1–72

    Article  MathSciNet  Google Scholar 

  7. Atzeni P, Torlone R (1995) Schema translation between heterogeneous data models in a lattice framework. In: Data semantics conference. Chapman & Hall, London, pp 345–364

    Google Scholar 

  8. Atzeni P, Torlone R (1997) MDM: A multiple-data model tool for the management of heterogeneous database schemes. In: SIGMOD. ACM, NY, pp 528–531

    Google Scholar 

  9. Beeri C, Milo T (1999) Schemas for intergration and translation of structured and semi-structured data. In: ICDT. Springer, London, pp 296–313

    Google Scholar 

  10. Beeri C, Vardi M (1984) A proof procedure for data dependencies. J ACM 31(4):718–741

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonifati A, Chang EQ, Ho T, Lakshmanan L, Pottinger R (2005) HePToX: Marrying XML and heterogeneity in your P2P databases. In: VLDB. VLDB Endowment, pp 1267–1270

    Google Scholar 

  12. Bonifati A, Mecca G, Pappalardo A, Raunich S, Summa G (2008) Schema mapping verification: The spicy way. In: EDBT. ACM, NY, pp 85–96

    Google Scholar 

  13. Bonifati A, Chang EQ, Ho T, Lakshmanan L, Pottinger R, Chung Y (2010) Schema mapping and query translation in heterogeneous P2P XML databases. VLDB J 19(2):231–256

    Article  Google Scholar 

  14. Cabibbo L (2009) On keys, foreign keys and nullable attributes in relational mapping systems. In: EDBT. ACM, NY, pp 263–274

    Google Scholar 

  15. Calì A, Gottlob G, Lukasiewicz T (2009a) Datalog ± : A unified approach to ontologies and integrity constraints. In: ICDT. ACM, NY, pp 14–30

    Google Scholar 

  16. Calì A, Gottlob G, Lukasiewicz T (2009b) A general datalog-based framework for tractable query answering over ontologies. In: PODS. ACM, NY, pp 77–86

    Google Scholar 

  17. Calvanese D, De Giacomo G, Lenzerini M, Rosati R (2004) Logical foundations of peer-to-peer data integration. In: ACM PODS. ACM, NY, pp 241–251

    Google Scholar 

  18. Chandra AK, Merlin PM (1977) Optimal implementation of conjunctive queries in relational data bases. In: STOC. ACM, NY, pp 77–90

    Google Scholar 

  19. Chiticariu L (2005) Computing the core in data exchange: Algorithmic issues. MS Project Report, unpublished manuscript

    Google Scholar 

  20. Cluet S, Delobel C, Siméon J, Smaga K (1998) Your mediators need data conversion! In: SIGMOD. ACM, NY, pp 177–188

    Google Scholar 

  21. Davidson S, Kosky A (1997) IEEE Computer Society. In: Proceedings of the Thirteenth International Conference on Data Engineering, April 7–11, 1997 Birmingham UK

    Google Scholar 

  22. Deutsch A, Popa L, Tannen V (1999) Physical data independence, constraints, and optimization with universal plans. In: VLDB. Morgan Kaufmann, CA, pp 459–470

    Google Scholar 

  23. Fagin R (2007) Inverting schema mappings. ACM TODS 32(4)

    Google Scholar 

  24. Fagin R, Kolaitis P, Miller R, Popa L (2005a) Data exchange: Semantics and query answering. TCS 336(1):89–124

    Article  MathSciNet  MATH  Google Scholar 

  25. Fagin R, Kolaitis P, Popa L (2005b) Data exchange: Getting to the core. ACM TODS 30(1):174–210

    Article  MathSciNet  Google Scholar 

  26. Fagin R, Kolaitis P, Nash A, Popa L (2008) Towards a theory of schema-mapping optimization. In: ACM PODS. ACM, NY, pp 33–42

    Google Scholar 

  27. Fagin R, Haas LM, Hernandez M, Miller RJ, Popa L, Velegrakis Y (2009) Clio: Schema mapping creation and data exchange. In: Borgida A, Chaudhri V, Giorgini P, Yu E (eds) Conceptual modeling: Foundations and applications. Springer, Heidelberg, pp 198–236

    Chapter  Google Scholar 

  28. Fuxman A, Hernández MA, Howard CT, Miller RJ, Papotti P, Popa L (2006) Nested mappings: Schema mapping reloaded. In: VLDB. VLDB Endowment, pp 67–78

    Google Scholar 

  29. Gottlob G, Nash A (2008) Efficient core computation in data exchange. J ACM 55(2):1–49

    Article  MathSciNet  Google Scholar 

  30. Gottlob G, Pichler R, Savenkov V (2009) Normalization and optimization of schema mappings. PVLDB 2(1):1102–1113

    Google Scholar 

  31. Haas LM (2007) Lecture Notes in Computer Science, vol. 4353. In: ICDT, Springer.

    Google Scholar 

  32. Halevy AY (2010) Technical perspective – schema mappings: Rules for mixing data. Commun CACM 53(1):100

    Article  Google Scholar 

  33. Hell P, Nešetřil J (1992) The core of a graph. Discrete Math 109(1–3):117–126

    Article  MathSciNet  MATH  Google Scholar 

  34. Hernández MA, Papotti P, Tan WC (2008) Data exchange with data-metadata translations. PVLDB 1(1):260–273

    Google Scholar 

  35. Hull R, Yoshikawa M (1990) ILOG: Declarative creation and manipulation of object identifiers. In: VLDB. Morgan Kaufmann, CA, pp 455–468

    Google Scholar 

  36. Ives ZG, Halevy AY, Mork P, Tatarinov I (2004) Piazza: Mediation and integration infrastructure for semantic web data. J Web Sem 1(2):155–175

    Article  Google Scholar 

  37. Ives ZG, Green TJ, Karvounarakis G, Taylor NE, Tannen V, Talukdar PP, Jacob M, Pereira F(2008) The orchestra collaborative data sharing system. SIGMOD Rec 37(3):26–32

    Article  Google Scholar 

  38. Jiang H, Ho H, Popa L, Han W (2007) Mapping-driven XML transformation. In: WWW conference. ACM, NY, pp 1063–1072

    Google Scholar 

  39. Levy AY, Mendelzon A, Sagiv Y, Srivastava D (1995) Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. ACM Press, San Jose, California, May 22–25, 1995

    Google Scholar 

  40. Maier D, Mendelzon AO, Sagiv Y (1979) Testing implications of data dependencies. ACM TODS 4(4):455–469

    Article  Google Scholar 

  41. Maier D, Ullman JD, Vardi MY (1984) On the foundations of the universal relation model. ACM TODS 9(2):283–308

    Article  MathSciNet  MATH  Google Scholar 

  42. Marnette B (2009) Generalized schema mappings: From termination to tractability. In: ACM PODS. ACM, NY, pp 13–22

    Google Scholar 

  43. Marnette B, Mecca G, Papotti P (2010) Scalable data exchange with functional dependencies. PVLDB 3(1):106–116

    Google Scholar 

  44. Mecca G, Papotti P, Raunich S (2009a) Core schema mappings. In: SIGMOD. ACM, NY, pp 655–668

    Google Scholar 

  45. Mecca G, Papotti P, Raunich S, Buoncristiano M (2009b) Concise and expressive mappings with + Spicy. PVLDB 2(2):1582–1585

    Google Scholar 

  46. Melnik S, Bernstein P, Halevy A, Rahm E (2005) Supporting executable mappings in model management. In: SIGMOD. ACM, NY, pp 167–178

    Google Scholar 

  47. Miller RJ, Haas LM, Hernandez MA (2000) Schema mapping as query discovery. In: VLDB. Morgan Kaufmann, CA, pp 77–99

    Google Scholar 

  48. Milo T, Zohar S (1998) Using schema matching to simplify heterogeneous data translation. In: VLDB. Morgan Kaufmann, CA, pp 122–133

    Google Scholar 

  49. OWL-Full (2004) OWL web ontology language reference. http://www.w3.org/TR/owl-ref/ http://www.#OWLFull

  50. Popa L (2000) Object/relational query optimization with chase and backchase. PhD thesis, University of Pennsylvania

    Google Scholar 

  51. Popa L, Tannen V (1999) An equational chase for path-conjunctive queries, constraints, and views. In: ICDT. Springer, London, pp 39–57

    Google Scholar 

  52. Popa L, Velegrakis Y, Miller RJ, Hernandez MA, Fagin R (2002) Translating web data. In: VLDB. VLDB Endowment, pp 598–609

    Google Scholar 

  53. Pottinger R, Halevy A (2001) Minicon: A scalable algorithm for answering queries using views. VLDB J 10(2–3):182–198

    MATH  Google Scholar 

  54. Raffio A, Braga D, Ceri S, Papotti P, Hernández MA (2008) Clip: A visual language for explicit schema mappings. In: ICDE. IEEE Computer Society, Washington, DC, pp 30–39

    Google Scholar 

  55. Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10:334–350

    Article  MATH  Google Scholar 

  56. Savenkov V, Pichler R (2008) Towards practical feasibility of core computation in data exchange. In: LPAR. Springer, Heidelberg, pp 62–78

    Google Scholar 

  57. Shu NC, Housel BC, Taylor RW, Ghosh SP, Lum VY (1977) EXPRESS: A data extraction, processing and restructuring system. ACM TODS 2(2):134–174

    Article  Google Scholar 

  58. ten Cate B, Kolaitis PG (2009) Structural characterizations of schema-mapping languages. In: ICDT. ACM, NY, pp 63–72

    Google Scholar 

  59. ten Cate B, Chiticariu L, Kolaitis P, Tan WC (2009) Laconic schema mappings: Computing core universal solutions by means of SQL queries. PVLDB 2(1):1006–1017

    Google Scholar 

  60. Tork-Roth M, Schwarz PM (1997) Don’t scrap it, wrap it! A wrapper architecture for legacy data sources. In: VLDB. Morgan Kaufmann, CA, pp 266–275

    Google Scholar 

  61. Velegrakis Y (2005) Managing schema mappings in highly heterogeneous environments. PhD thesis, University of Toronto

    Google Scholar 

  62. Yu C, Popa L (2004) Constraint-based XML query rewriting for data integration. In: SIGMOD conference. ACM, NY, pp 371–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Bonifati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonifati, A., Mecca, G., Papotti, P., Velegrakis, Y. (2011). Discovery and Correctness of Schema Mapping Transformations. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds) Schema Matching and Mapping. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16518-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16518-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16517-7

  • Online ISBN: 978-3-642-16518-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics