Abstract
A novel version of spectral mapping for partially labeled sample classification is proposed in this paper. This new method adds the label information into the mapping process, and adopts the geodesic distance rather than Euclidean distance as the measure of the difference between two data points. The experimental results show that the proposed method yields significant benefits for partially labeled classification with respect to the previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Seeger, M.: Learning with labeled and unlabeled data. Technical report, The University of Edinburgh (2000)
Zhou, D.Y., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local and global consistency, Max Planck Institute for Biological Cybernetics Technical Report (2003)
Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian field and harmonic functions. In: Proceeding of the 20th International Conference on Machine Learning (ICML 2003), Washington DC (2003)
Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Machine Learning 56, 209–239 (2004)
Du, W., Inoue, K., Urahama, K.: Dimensionality reduction for semi-supervised face recognition. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3614, pp. 1–10. Springer, Heidelberg (2005)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhao, ZQ., Gao, J., Wu, X. (2010). Semi-supervised Learning by Spectral Mapping with Label Information. In: Wang, F.L., Deng, H., Gao, Y., Lei, J. (eds) Artificial Intelligence and Computational Intelligence. AICI 2010. Lecture Notes in Computer Science(), vol 6319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16530-6_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-16530-6_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16529-0
Online ISBN: 978-3-642-16530-6
eBook Packages: Computer ScienceComputer Science (R0)