Abstract
Case Based Reasoning (CBR) is a Knowledge Management approach that consists in the development of decision support systems where problem are solved by analogy with similar problem solved in the past. In this way, the system supports users in finding solutions without starting from scratch. CBR has become a very important research topic in Artificial Intelligence, with the definition of methodologies and architectural patterns for supporting developers in the design and implementation of case–based systems. The paper presents one of this frameworks, namely CReP, an on–going research project of the Artificial Intelligence Laboratory (L.Int.Ar.) of University of Milan–Bicocca, focusing on the integration between CBR paradigm and metadata approach to obtain domain–independent case structure and retrieval algorithm definition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kolodner, J.: Case Based Reasoning. Morgan Kaufmann Pu., San Mateo (1993)
Aamodt, A., Plaza, E.: Case–Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)
Bandini, S., Manzoni, S., Sartori, F.: Acquiring Knowledge and Numerical Data to Support CBR Retrieval. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 8–13. Springer, Heidelberg (2002)
Bandini, S., Colombo, E., Sartori, F., Vizzari, G.: CBR and Production Process Design: the Case of P-Truck Curing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 504–517. Springer, Heidelberg (2004)
Bandini, S., Mereghetti, P., Merino, E., Sartori, F.: Case-Based Support to Small-Medium Enterprises: The Symphony Project. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 483–494. Springer, Heidelberg (2007)
Bergmann, R., Stahl, A.: Similarity Measures for Object–Oriented Case Representations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 25–36. Springer, Heidelberg (1998)
Finnie, G.R., Sun, Z.: Similarity and Metrics in Case-Based Reasoning. International Journal of Intelligent Systems 17(3), 273–287 (2002)
Bandini, S., Colombo, E., Frisoni, G., Sartori, F., Svensson, J.: Case-Based Troubleshooting in the Automotive Context: the SMMART Project. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 600–614. Springer, Heidelberg (2008)
Wilke, W., Bergmann, R.: Incremental Adaptation with the INRECA-System. In: ECAI 1996 Workshop on Adaptation in Case-Based Reasoning (1996)
Díaz-Agudo, B., González-Calero, P.A., Recio-García, J.A., Sánchez-Ruiz, A.A.: Building CBR systems with jCOLIBRI. Journal Science of Computer Programming 69, 1–3 (2007)
Recio-García, J.A., Díaz-Agudo, B., González-Calero, P.A., Sánchez-Ruiz, A.A.: Ontology based CBR with jCOLIBRI. In: Proceedings of 26th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence. Springer, Heidelberg (2006)
Premraj, R., Shepperd, M., Cartwright, M.: Meta-data to Guide Retrieval in CBR for Software Cost Prediction. Tecnical Report nr TR03-07, University of Bournemouth (2004), http://dec.bournemouth.ac.uk/ESERG/Technical_Reports/TR03-07/TR03-07.pdf
Stoecklin, S., Shwartz, D.G., Yilmaz, E., Patel, M.: A Metadata Architecture for Case-Based Reasoning. Tecnical Report nr TR-040203, FSU Computer Science (2004), http://www.cs.fsu.edu/research/reports/TR-040203.pdf
Manzoni, S., Sartori, F., Vizzari, G.: Substitutional Adaptation in Case-Based Reasoning: A General Framework Applied to P-Truck Curing. Applied Artificial Intelligence 21(4-5), 427–442 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Manenti, L., Sartori, F. (2010). Exploiting CReP for Knowledge Retrieval and Use in Complex Domains. In: Sánchez-Alonso, S., Athanasiadis, I.N. (eds) Metadata and Semantic Research. MTSR 2010. Communications in Computer and Information Science, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16552-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-16552-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16551-1
Online ISBN: 978-3-642-16552-8
eBook Packages: Computer ScienceComputer Science (R0)