Skip to main content

Exploiting CReP for Knowledge Retrieval and Use in Complex Domains

  • Conference paper
Metadata and Semantic Research (MTSR 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 108))

Included in the following conference series:

  • 717 Accesses

Abstract

Case Based Reasoning (CBR) is a Knowledge Management approach that consists in the development of decision support systems where problem are solved by analogy with similar problem solved in the past. In this way, the system supports users in finding solutions without starting from scratch. CBR has become a very important research topic in Artificial Intelligence, with the definition of methodologies and architectural patterns for supporting developers in the design and implementation of case–based systems. The paper presents one of this frameworks, namely CReP, an on–going research project of the Artificial Intelligence Laboratory (L.Int.Ar.) of University of Milan–Bicocca, focusing on the integration between CBR paradigm and metadata approach to obtain domain–independent case structure and retrieval algorithm definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kolodner, J.: Case Based Reasoning. Morgan Kaufmann Pu., San Mateo (1993)

    Book  MATH  Google Scholar 

  2. Aamodt, A., Plaza, E.: Case–Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)

    Google Scholar 

  3. Bandini, S., Manzoni, S., Sartori, F.: Acquiring Knowledge and Numerical Data to Support CBR Retrieval. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 8–13. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Bandini, S., Colombo, E., Sartori, F., Vizzari, G.: CBR and Production Process Design: the Case of P-Truck Curing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 504–517. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Bandini, S., Mereghetti, P., Merino, E., Sartori, F.: Case-Based Support to Small-Medium Enterprises: The Symphony Project. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 483–494. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Bergmann, R., Stahl, A.: Similarity Measures for Object–Oriented Case Representations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 25–36. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Finnie, G.R., Sun, Z.: Similarity and Metrics in Case-Based Reasoning. International Journal of Intelligent Systems 17(3), 273–287 (2002)

    Article  MATH  Google Scholar 

  8. Bandini, S., Colombo, E., Frisoni, G., Sartori, F., Svensson, J.: Case-Based Troubleshooting in the Automotive Context: the SMMART Project. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 600–614. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Wilke, W., Bergmann, R.: Incremental Adaptation with the INRECA-System. In: ECAI 1996 Workshop on Adaptation in Case-Based Reasoning (1996)

    Google Scholar 

  10. Díaz-Agudo, B., González-Calero, P.A., Recio-García, J.A., Sánchez-Ruiz, A.A.: Building CBR systems with jCOLIBRI. Journal Science of Computer Programming 69, 1–3 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Recio-García, J.A., Díaz-Agudo, B., González-Calero, P.A., Sánchez-Ruiz, A.A.: Ontology based CBR with jCOLIBRI. In: Proceedings of 26th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence. Springer, Heidelberg (2006)

    Google Scholar 

  12. Premraj, R., Shepperd, M., Cartwright, M.: Meta-data to Guide Retrieval in CBR for Software Cost Prediction. Tecnical Report nr TR03-07, University of Bournemouth (2004), http://dec.bournemouth.ac.uk/ESERG/Technical_Reports/TR03-07/TR03-07.pdf

  13. Stoecklin, S., Shwartz, D.G., Yilmaz, E., Patel, M.: A Metadata Architecture for Case-Based Reasoning. Tecnical Report nr TR-040203, FSU Computer Science (2004), http://www.cs.fsu.edu/research/reports/TR-040203.pdf

  14. Manzoni, S., Sartori, F., Vizzari, G.: Substitutional Adaptation in Case-Based Reasoning: A General Framework Applied to P-Truck Curing. Applied Artificial Intelligence 21(4-5), 427–442 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manenti, L., Sartori, F. (2010). Exploiting CReP for Knowledge Retrieval and Use in Complex Domains. In: Sánchez-Alonso, S., Athanasiadis, I.N. (eds) Metadata and Semantic Research. MTSR 2010. Communications in Computer and Information Science, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16552-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16552-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16551-1

  • Online ISBN: 978-3-642-16552-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics