Skip to main content

Social Manipulation of Online Recommender Systems

  • Conference paper
Social Informatics (SocInfo 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6430))

Included in the following conference series:

Abstract

Online recommender systems are a common target of attack. Existing research has focused on automated manipulation of recommender systems through the creation of shill accounts, and either do not consider attacks by coalitions of real users, downplay the impact of such attacks, or state that such attacks are difficult to impossible to detect. In this study, we examine a recommender system that is part of an online social network, show that users successfully induced other users to manipulate their recommendations, that these manipulations were effective, and that most such manipulations are detectable even when performed by ordinary, non-automated users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burke, R., Mobasher, B., Williams, C., Bhaumik, R.: Classification features for attack detection in collaborative recommender systems. In: KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 542–547. ACM, New York (2006)

    Google Scholar 

  2. Chirita, P.A., Nejdl, W., Zamfir, C.: Preventing shilling attacks in online recommender systems. In: WIDM 2005: Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management, pp. 67–74. ACM, New York (2005)

    Google Scholar 

  3. DeFigueiredo, D., Barr, E., Wu, S.F.: Trust is in the eye of the beholder. In: CSE 2009: Proceedings of the 2009 International Conference on Computational Science and Engineering, pp. 100–108. IEEE Computer Society, Washington (2009)

    Chapter  Google Scholar 

  4. Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 93–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. ACM Commun. 35(12), 61–70 (1992)

    Article  Google Scholar 

  6. Hogg, R.V., Tanis, E.A.: Probability and Statistical Inference. Prentice-Hall, Englewood Cliffs (2009)

    MATH  Google Scholar 

  7. Hsu, C.F., Khabiri, E., Caverlee, J.: Ranking comments on the social web. In: CSE 2009: Proceedings of the 2009 International Conference on Computational Science and Engineering, pp. 90–97. IEEE Computer Society, Washington (2009)

    Chapter  Google Scholar 

  8. Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: WWW 2004: Proceedings of the 13th International Conference on World Wide Web, pp. 393–402. ACM, New York (2004)

    Google Scholar 

  9. Lerman, K., Galstyan, A.: Analysis of social voting patterns on digg. In: WOSP 2008: Proceedings of the First Workshop on Online Social Networks, pp. 7–12. ACM, New York (2008)

    Chapter  Google Scholar 

  10. Massa, P., Avesani, P.: Trust-aware recommender systems. In: RecSys 2007: Proceedings of the 2007 ACM Conference on Recommender Systems, pp. 17–24. ACM, New York (2007)

    Chapter  Google Scholar 

  11. Mehta, B., Hofmann, T., Fankhauser, P.: Lies and propaganda: detecting spam users in collaborative filtering. In: IUI 2007: Proceedings of the 12th International Conference on Intelligent User Interfaces, pp. 14–21. ACM, New York (2007)

    Google Scholar 

  12. O’Donovan, J., Smyth, B.: Trust in recommender systems. In: IUI 2005: Proceedings of the 10th International Conference on Intelligent User Interfaces, pp. 167–174. ACM, New York (2005)

    Google Scholar 

  13. O’Mahony, M., Hurley, N., Kushmerick, N., Silvestre, G.: Collaborative recommendation: A robustness analysis. ACM Trans. Internet Technol. 4(4), 344–377 (2004)

    Article  Google Scholar 

  14. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  15. Resnick, P., Sami, R.: The influence limiter: provably manipulation-resistant recommender systems. In: RecSys 2007: Proceedings of the 2007 ACM conference on Recommender systems, pp. 25–32. ACM, New York (2007)

    Chapter  Google Scholar 

  16. Resnick, P., Varian, H.R.: Recommender systems. ACM Commun. 40(3), 56–58 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lang, J., Spear, M., Wu, S.F. (2010). Social Manipulation of Online Recommender Systems. In: Bolc, L., Makowski, M., Wierzbicki, A. (eds) Social Informatics. SocInfo 2010. Lecture Notes in Computer Science, vol 6430. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16567-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16567-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16566-5

  • Online ISBN: 978-3-642-16567-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics