Skip to main content

A Wearable Rehabilitation Robotic Hand Driven by PM-TS Actuators

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6425))

Included in the following conference series:

Abstract

Robotic-assisted therapy is of great benefit to the recovery of motor function for the patients survived from stroke. However there have been few emphases on the patients’ hand training/exercise during the rehabilitation process. The goal of this research is to develop a novel wearable device for robotic assisted hand therapy. Unlike the traditional agonist/antagonist PM actuator, we propose a new PM-TS actuator comprising a Pneumatic Muscle (PM) and a Torsion Spring (TS) for joint drive. Based on the proposed PM-TS actuator, we design a robotic hand which is wearable and provides assistive forces required for finger training. The robotic hand has two distinct degrees of freedom at the metacarpophalangeal (MP) and proximal interphalangeal (PIP) joints. The variable integral PID (VIPID) controller was designed to make the joint angle of robotic hand can accurately track a given trajectory. The results show that the VIPID controller has better performance than the conventional PID controller. The proposed rehabilitation robotic hand is potentially of providing supplemental at-home therapy in addition to the clinic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouzit, M., Burdea, G., Popescu, G., Boian, R.: The Rutgers Master II—New design force-feedback glove. IEEE ASME Trans. Mechatron. 7, 256–263 (2002)

    Article  Google Scholar 

  2. Takahashi, C.D., Der-Yeghiaian, L., Le, V.H., Cramer, S.C.: A robotic device for hand motor therapy after stroke. In: 9th IEEE International Conference on Rehabilitation Robotics Conference, pp. 17–20. IEEE Press, Chicago (2005)

    Google Scholar 

  3. Worsnopp, T.T., Peshkin, M.A., Colgate, J.E., Kamper, D.G.: An actuated finger exoskeleton for hand rehabilitation following stroke. In: 10th IEEE International Conference on Rehabilitation Robotics, pp. 896–901. IEEE Press, Noordwijk (2007)

    Google Scholar 

  4. Loureiro, R.C., Harwin, W.S.: Reach & grasp therapy: Design and control of a 9-DOF robotic neuro-rehabilitation system. In: 10th IEEE International Conference on Rehabilitation Robotics, pp. 757–763. IEEE Press, Noordwijk (2007)

    Google Scholar 

  5. Dovat, L., Lambercy, O., Johnson, V., Salman, B., Wong, S., Gassert, R., Burdet, E., Leong, T.C., Milner, T.: A cable driven robotic system to train finger function after stroke. In: 10th IEEE International Conference on Rehabilitation Robotics, pp. 222–227. IEEE Press, Noordwijk (2007)

    Google Scholar 

  6. Lambercy, O., Dovat, L., Gassert, R., Burdet, E., Chee, L.T., Milner, T.: A Haptic Knob for Rehabilitation of Hand Function. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 356–366 (2007)

    Article  Google Scholar 

  7. Mulas, M., Folgheraiter, M., Gini, G.: An EMG-controlled Exoskeleton for Hand Rehabilitation. In: 9th IEEE International Conference on Rehabilitation Robotics, pp. 371–374. IEEE Press, Chicago (2005)

    Google Scholar 

  8. Tsagarakis, N.G., Caldwell, D.G.: Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training. Autonomous Robots 15, 21–33 (2003)

    Article  Google Scholar 

  9. Caldwell, D.G., Medrano-Cerda, G.A., Goodwin, M.: Control of pneumatic muscle actuators. IEEE Control Syst. Mag. 15, 40–48 (1995)

    Article  Google Scholar 

  10. Chou, C.P., Hannaford, B.: Static and dynamic characteristics of McKibben pneumatic artificial muscles. In: IEEE Robotics and Automation Conf., pp. 281–286. IEEE Press, San Diego (1994)

    Google Scholar 

  11. Ferris, D.P., Czerniecki, J.M., Hannaford, B.: An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles. J. Appl. Biomech. 21, 189–197 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, J., Huang, J., Wang, Y., Xing, K. (2010). A Wearable Rehabilitation Robotic Hand Driven by PM-TS Actuators. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16587-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16587-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16586-3

  • Online ISBN: 978-3-642-16587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics