Abstract
We desire a capability for the lifelong verification of complex embedded systems that degrade over time, such as a semi-autonomous car. The field of runtime verification has developed many tools for monitoring the safety of software systems in real time. However, these tools do not allow for uncertainty in the system’s state or failure, both of which are essential for monitoring hardware as it degrades. This work augments runtime verification with techniques from model-based estimation in order to provide a capability for monitoring the safety criteria of mixed hardware/software systems that is robust to uncertainty and hardware failure.
We begin by framing the problem as runtime verification of stochastic, faulty, hidden-state systems. We solve this problem by performing belief state estimation over the combined state of the Büchi automata representing the safety requirements and the probabilistic hierarchical constraint automata representing the embedded system. This method provides a clean framing of safety monitoring of mixed stochastic systems as an instance of Bayesian filtering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
Black, J.: System Safety as an Emergent Property. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (April 2009)
Drusinsky, D.: The Temporal Rover and the ATG Rover. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg (2000)
Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: IFIP Conf. Proc., vol. 38, pp. 3–18 (1995)
Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal properties on running programs. In: 16th IEEE International Conference on Automated Software Engineering, San Diego, CA (2001)
Havelund, K., Roşu, G.: Java pathexplorer - a runtime verification tool. In: The 6th International Symposium on AI, Robotics and Automation in Space (May 2001)
Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Java-MaC: a runtime assurance approach for Java programs. Formal Methods in System Design 24(2), 129–155 (2004)
Martin, O.B., Chung, S.H., Williams, B.C.: A tractable approach to probabilistically accurate mode estimation. In: Proc of iSAIRAS 2005, Munich, Germany (September 2005)
Mikaelian, T., Williams, B.C., Sachenbacher, M.: Model-based monitoring and diagnosis of systems with software-extended behavior. In: AAAI 2005, Pittsburgh, PA, pp. 327–333 (July 2005)
Peters, D.K., Parnas, D.L.: Requirements-based monitors for real-time systems. IEEE Transactions on Software Engineering 28(2) (February 2002)
Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp. 46–57 (1977)
Sammapun, U., Sokolsky, O., Lee, I., Regehr, J.: Statistical runtime checking of probabilistic properties. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 164–175. Springer, Heidelberg (2007)
Sistla, A.P., Srinivas, A.R.: Monitoring temporal properties of stochastic systems. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 294–308. Springer, Heidelberg (2008)
Williams, B., Chung, S., Gupta, V.: Mode estimation of model-based programs: Monitoring systems with complex behavior. In: Proc. of the International Joint Conference on Artificial Intelligence, Seattle, WA, pp. 579–585 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wilcox, C.M., Williams, B.C. (2010). Runtime Verification of Stochastic, Faulty Systems. In: Barringer, H., et al. Runtime Verification. RV 2010. Lecture Notes in Computer Science, vol 6418. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16612-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-16612-9_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16611-2
Online ISBN: 978-3-642-16612-9
eBook Packages: Computer ScienceComputer Science (R0)