Skip to main content

Adaptive Learning Approach of Fuzzy Logic Controller with Evolution for Pursuit–Evasion Games

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6421))

Abstract

This paper studies a simplified pursuit-evasion problem. We assume that the evader moves with constant speed along a trajectory that is well-defined and known a priori. The objective of steering control of the pursuer modeled as a nonholonomic unicycle-type mobile robot is to intercept the moving evader. An adaptive learning approach of fuzzy logic controller is developed as an inverse kinematics solver of unicycle to enable a mobile robot to use the evader trajectory to adapt its control actions to pursuit-evasion game. In this proposed approach, GA evolves the parameter values of the fuzzy logic control system aiming to approximate the inverse kinematics of pursuer so as to generate a trajectory capturing the evader. Simulation results of pursuit-evasion game illustrate the performance of the proposed approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, C.H., Wang, W.Y., Lee, T.T., Tseng, P.S.: Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control. IEEE Trans. Syst. Man, Cyber. 25, 841–851 (1995)

    Article  Google Scholar 

  2. Wang, L.X.: Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  3. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks, 359–366 (1989)

    Google Scholar 

  4. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans. Neural Networks 3, 807–814 (1992)

    Article  Google Scholar 

  5. Wang, C.H., Liu, H.L., Lin, C.T.: Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm. IEEE Transactions on Systems, Man and Cybernetics. 31, 467–475 (2001)

    Article  Google Scholar 

  6. Wang, W.Y., Lee, T.T., Hsu, C.C., Li, Y.H.: GA-based learning of bmf fuzzy-neural network. In: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2002), vol. 2, pp. 1234–1239 (2002)

    Google Scholar 

  7. Farag, W.A., Quintana, V.H., Lamberttorres, G.: A Genetic-Based Neuro-Fuzzy approach for modeling and control of dynamical systems. IEEE Trans. on neural networks 9 (1998)

    Google Scholar 

  8. Yuan, Y., Zhuang, H.: A genetic algorithm for generating fuzzy classification rules 84, 1–19 (1996)

    Google Scholar 

  9. Seng, T.L., Khalid, M.B., Yusof, R.: Tuning of a neuro-fuzzy controller by genetic algorithm. IEEE Trans. Syst. Man, Cyber. Part B 29, 226–236 (1999)

    Article  Google Scholar 

  10. Hladek, D., Vascak, J., Sincak, P.: Hierarchical fuzzy inference system for robotic pursuit evasion task. In: 6th International Symposium on Applied Machine Intelligence, SAMI 2008, pp. 273–277 (2008)

    Google Scholar 

  11. Kehagias, A., Hollinger, G., Singh, S.: A graph search algorithm for indoor pursuit/evasion. Mathematical and Computer Modelling 50, 1305–1317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lim, S.A., Furukawa, T., Dissanayake, G., D-Whyte, H.: A Time-Optimal Control Strategy for Pursuit-Evasion Games Problems. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3962–3966 (2004)

    Google Scholar 

  13. Isler, V., Kannan, S., Khanna, S.: Randomized pursuit-evasion in a polygonal environment. IEEE Transactions on Robotics 21, 875–884 (2005)

    Article  MATH  Google Scholar 

  14. Liu, J., Liu, S., Wu, H., Zhang, Y.: A pursuit-evasion algorithm based on hierarchical reinforcement learning. In: 2009 International Conference on Measuring Technology, vol. 2, pp. 482–486 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chung, HC., Liu, JS. (2010). Adaptive Learning Approach of Fuzzy Logic Controller with Evolution for Pursuit–Evasion Games. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2010. Lecture Notes in Computer Science(), vol 6421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16693-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16693-8_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16692-1

  • Online ISBN: 978-3-642-16693-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics