Skip to main content

Adaptive Fuzzy Neural Network Control for Automatic Landing System

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6421))

Included in the following conference series:

Abstract

This paper presents an intelligent automatic landing system that uses adaptive fuzzy neural network controller to improve the performance of conventional automatic landing systems. Functional fuzzy rules are implemented in neural network. In this study, Lyapunov stability theory is utilized to derive adaptive learning rate in the controller design. Stability of the control system is guaranteed. Simulation results show that the fuzzy neural network controller with adaptive learning rate has better performance than PID controller in guiding aircraft to a safe landing in turbulence condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. NASDAC Review of NTSB Weather-Related Accidents, http://www.ntsb.gov/aviation/Table10.htm

  2. Aircraft accident statistics, http://www.planecrashinfo.com/cause.htm

  3. Dogan, A., Kabamba, P.T.: Escaping a Microburst with Turbulence. In: Proc. American Control Conference, pp. 1349–1353 (2000)

    Google Scholar 

  4. Chen, C.Y.: Optimal Abort Landing Trajectories for a High-Angle-Of-Attack Windshear Encounter. The Chinese Journal of Mechanics 11(1), 75–81 (1995)

    Google Scholar 

  5. Buschek, H., Calise, A.J.: Uncertainty Modeling and Fixed-Order Controller Design for a Hypersonic Vehicle Model. Journal of Guidance, Control, and Dynamics 20(1), 42–48 (1997)

    Article  MATH  Google Scholar 

  6. Federal Aviation Administration, Automatic Landing Systems. AC 20-57A (January 1971)

    Google Scholar 

  7. Cohen, C.E., et al.: Automatic Landing of a 737 Using GNSS Integrity Beacons. In: Proc. ISPA (1995)

    Google Scholar 

  8. DDC-I: Advanced Auto Landing System from Swiss Federal Aircraft Factory. Real-Time Journal, Sprint (1995)

    Google Scholar 

  9. Asai, S., et al.: Development of Flight Control System for Automatic Landing Flight Experiment. Mitsubishi Heavy Industries Technical Review 34(3) (1997)

    Google Scholar 

  10. Kaufmann, D.N., McNally, B.D.: Flight Test Evaluation of the Stanford University and United Airlines Differential GPS Category III Automatic Landing System. NASA Technical Memorandum 110354 (June 1995)

    Google Scholar 

  11. Malaek, S.M.B., Sadati, N., Izadi, H., Pakmehr, M.: Intelligent Autolanding Controller Design Using Neural Networks and Fuzzy Logic. In: Proc. IEEE 5th Control Conference, vol. 1, pp. 365–373 (2004)

    Google Scholar 

  12. Izadi, H., Pakmehr, M., Sadati, N.: Optimal Neuro-Controller in Longitudinal Autolanding of a Commercial Jet Transport. In: Proc. IEEE International Conference on Control Applications, pp. 1–6 (2003)

    Google Scholar 

  13. Chaturvedi, D.K., Chauhan, R., Kalra, P.K.: Application of Generalized Neural Network for Aircraft Landing Control System. Soft Computing 6, 118–441 (2002)

    Article  Google Scholar 

  14. Iiguni, Y., Akiyoshi, H., Adachi, N.: An Intelligent Landing System Based on Human Skill Model. IEEE Transactions on Aerospace and Electronic Systems 34, 877–882 (1998)

    Article  Google Scholar 

  15. Ionita, S., Sofron, E.: The Fuzzy Model for Aircraft Landing Control. In: Proc. AFSS International Conference on Fuzzy Systems, pp. 47–54 (2002)

    Google Scholar 

  16. Nho, K., Agarwal, R.K.: Automatic Landing System Design Using Fuzzy Logic. Journal of Guidance, Control, and Dynamics 23, 298–304 (2000)

    Article  Google Scholar 

  17. Jorgensen, C.C., Schley, C.: A Neural Network Baseline Problem for Control of Aircraft Flare and Touchdown. Neural Networks for Control, 403–425 (1991)

    Google Scholar 

  18. Juang, J.G., Chang, H.H.: Application of Time Delay Neural Network to Automatic Landing Control. In: Proc. of IEEE International Conference on Control Applications, vol. 1, pp. 150–155 (2002)

    Google Scholar 

  19. Lee, C.H., Teng, C.C.: Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks. IEEE Trans. Fuzzy Sets and Systems 8(6) (August 2000)

    Google Scholar 

  20. Chin, K.C., Juang, J.G.: Application of Functional Fuzzy Neural Network to Aircraft Automatic Landing Control in Turbulence Condition. In: Proc. of Joint Conference on Fuzzy Systems and Grey Systems, A117 (2003) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Juang, JG., Chien, LH. (2010). Adaptive Fuzzy Neural Network Control for Automatic Landing System. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2010. Lecture Notes in Computer Science(), vol 6421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16693-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16693-8_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16692-1

  • Online ISBN: 978-3-642-16693-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics