Abstract
In this paper, we propose the notion of +-unambiguous product which is expanded from unambiguous product and the definitions of alternative product, alternative code, even alternative code on a pair (X, Y) of languages. Some basic properties of +-unambiguous product, alternative codes and even alternative codes related to usual codes are given which show that these new codes can be considered as generations of codes. Necessary and sufficient conditions for alternative codes and even alternative codes are established. The independence of the claims in these conditions are proved. The existence of algorithms to decide whether a pair (X, Y) is an alternative or is an even alternative code, in case both components X, Y are regular, is shown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anselmo, M.: Automates et codes zigzag. R.A.I.R.O. Theoretical Informatics and Applications 25(1), 49–66 (1991)
Ahmad, K.: Quelques problèmes de Mélanges Contrôlés. Thèse Docteur en Informatique, Université de Nice Sophia-Antipolis (2002)
Berstel, J., Perrin, D.: Theory of Codes. Academic Press Inc., New York (1985)
Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New-York (1976)
Huy, P.T., Van, D.L.: On Non-Ambiguous Büchi V-automata. In: Proceedings of the Third Asian Mathematical Conference 2000, Diliman, Philippines, October 23-27, pp. 224–233. World Scientific, Singapore (April 2002) ISBN 981-02-4947-0
Pin, J.E.: Variété des Languages Infinis et variete de semigroupes. These Docteur d’Etat (1982)
Pin, J.E., Weil, P.: Polynomial closure and unambiguous products. Theory of Computing Systems 30, 383–422 (1997)
Schützenberger, M.P.: On a question concerning certain free submonoids. J. Combinatorial Theory, 422–437 (1966)
Weil, P.: Groups, codes and unambiguous automata. In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 351–362. Springer, Heidelberg (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vinh, H.N., Nam, V.T., Huy, P.T. (2010). Codes Base on Unambiguous Products. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2010. Lecture Notes in Computer Science(), vol 6423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16696-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-16696-9_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16695-2
Online ISBN: 978-3-642-16696-9
eBook Packages: Computer ScienceComputer Science (R0)