Skip to main content

Effects of Feature Selection Using Binary Particle Swarm Optimization on Wheat Variety Classification

  • Conference paper
Advances in Information Technology (IAIT 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 114))

Included in the following conference series:

  • 660 Accesses

Abstract

In this article, classification of wheat varieties is aimed with the help of multiclass support vector machines (M-SVM) and binary particle swarm optimization (BPSO) algorithm. For each wheat kernel, 9 geometric and 3 color features are obtained from the digital images which are belong to 5 wheat type. Wheat types are classified using M-SVM. In order to increase the reliability of the classification process, 2 fold cross validation approach is implemented and this process repeated 250 times. Average classification accuracy is obtained as 91.5%. With the aim of increasing the classification accuracy and decreasing the process time, descriptive features are decreased by BPSO algorithm and reduced from 12 to 7. Average of classification accuracy is obtained as 92.02% using 7 features obtained from reduction with BPSO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Du, C.-J., Sun, D.-W.: Recent developments in the applications of image processing techniques for food quality evaluation. Trends in Food Science & Technology 15, 230–249 (2004)

    Article  Google Scholar 

  2. Berrueta, L.A., Alonso-Salces, R.M., Héberger, K.: Supervised pattern recognition in food analysis. Journal of Chromatography A 1158, 196–214 (2007)

    Article  Google Scholar 

  3. Visen, N.S., Paliwall, J., Jayas, D.S., White, N.D.G.: Image analysis of bulk grain samples using neural Networks. Canadian Biosystems Engineering 46, 7.11–7.15 (2004)

    Google Scholar 

  4. Zapotoczny, P., Zielinska, M., Nita, Z.: Application of image analysis for the varietal classification of barley: Morphological features. Journal of Cereal Science 48, 104–110 (2008)

    Article  Google Scholar 

  5. Choudhary, R., Paliwal, J., Jayas, D.S.: Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images. Biosystems Engineering 99, 330–337 (2008)

    Article  Google Scholar 

  6. Tahir, A.R., Neethirajan, S., Jayas, D.S., Shahin, M.A., Symons, S.J., White, N.D.G.: Evaluation of the effect of moisture content on cereal grains by digital image analysis. Food Research International 40, 1140–1145 (2007)

    Article  Google Scholar 

  7. Ramalingam, G., Neethirajan, S., Jayas, D.S., White, N.D.G.: Charecterization of the Influence of Moisture Content on Single Wheat Kernels Using Machine Vision. In: CSBE/SCGAB 2009 Annual Conference, Prince Edward Island, July 12-15 (2009), Paper No: CSBE09-708

    Google Scholar 

  8. Neethirajan, S., Karunakaran, C., Symons, S., Jayas, D.S.: Classification of vitreousness in durum wheat using soft X-rays and transmitted light images. Computers and Electronics in Agriculture 53, 71–78 (2006)

    Article  Google Scholar 

  9. Wang, N., Zhang, N., Dowell, F., Pearson, T.: Determination fo durum vitreousness using transmissive and reflective images. In: 2003 ASAE Annual International Meeting, Las Vegas, Nevada, USA, July 27-30 (2003)

    Google Scholar 

  10. Utku, H., Köksel, H.: Use of Statistical Filters in the Classification of Wheats by Image Analysis. Joumat of Food Engineering 36, 385–394 (1998)

    Article  Google Scholar 

  11. Shouche, S.P., Rastogi, R., Bhagwat, S.G., Sainis, J.K.: Shape analysis of grains of Indian wheat varieties. Computers and Electronics in Agriculture 33, 55–76 (2001)

    Article  Google Scholar 

  12. Dubey, B.P., Bhagwat, S.G., Shouche, S.P., Sainis, J.K.: Potential of Artificial Neural Networks in Varietal Identification using Morphometry of Wheat Grains. Biosystems Engineering 95(1), 61–67 (2006)

    Article  Google Scholar 

  13. Raudys, S., Baykan, Ö.K., Babalık, A., Denisov, V., Bielskis, A.A.: Classifiers Fusion in Recognition of Wheat Viarieties. LNCS, vol. 447, pp. 62–71 (2007)

    Google Scholar 

  14. Babalık, A., Baykan, Ö.K., Botsalı, F.M.: Classification of Wheat Kernels Using Multi-Class Support Vector Machine. In: ISCSE 2010, International Symposium on Computing in Science & Engineering (2010) (article in press)

    Google Scholar 

  15. Huang, Y., Lan, Y., Thomson, S.J., Fang, A., Hoffmann, W.C., Lacey, R.E.: Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agriculture 71, 107–127 (2010)

    Article  Google Scholar 

  16. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  17. Avşar, E., Kamaşak, M.E., Çataltepe, Z.: Tek-sınıf destek vector makineleri kullanılarak EEG işaretlerinin sınıflandırılması. In: BIYOMUT 2009, İzmir, Turkey, May 20-24 (2009)

    Google Scholar 

  18. Ekici, S., Yıldırım, S., Poyraz, M.: Mesafe korumak için bir örüntü tanıma uygulaması. Gazi Üniversitesi Mühendislik – Mimarlık Fakültesi Dergisi (24), 51–61 (2009)

    Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948. Piscataway, NJ (1995)

    Chapter  Google Scholar 

  20. Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of 1997 conference systems man cybernetics, pp. 4104–4108. Piscataway, NJ (1997)

    Google Scholar 

  21. Chang, C.C., Lin, C.J.: LIBSVM:a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  22. Hsu, C.W., Lin, C.J.: A Comparasion of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babalık, A., Baykan, Ö.K., İşcan, H., Babaoğlu, İ., Fındık, O. (2010). Effects of Feature Selection Using Binary Particle Swarm Optimization on Wheat Variety Classification. In: Papasratorn, B., Lavangnananda, K., Chutimaskul, W., Vanijja, V. (eds) Advances in Information Technology. IAIT 2010. Communications in Computer and Information Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16699-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16699-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16698-3

  • Online ISBN: 978-3-642-16699-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics