Abstract
The area of graph mining bears great importance when dealing with semi-structured data such as XML, text and chemical and genetic data. One of the main challenges of this field is that out of many resulting frequent subgraphs it is hard to find interesting ones. We propose a novel algorithm that finds subgraphs of limited diameter and high symmetry. These subgraphs represent the more structurally interesting patterns in the database. Our approach also allows to decrease processing time drastically by employing the tree decomposition structure of database graphs during the discovery process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989); 51–58 (2002)
Bern, M., Lawler, E., Wong, A.: Linear-time computation of optimal subgraphs of decomposable graphs. Journal of Algorithms 8(2), 216–235 (1987)
Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)
Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)
Borgelt, C., Meinl, T., Berthold, M.: Advanced pruning strategies to speed up closed molecular fragments. In: Proc. IEEE Conf. on Systems, Man and Cybernetics (SMC 2004), The Hague, Netherlands. IEEE Press, Piscataway (2004)
Chi, Y., Yang, Y., Muntz, R.R.: Indexing and mining free trees. In: Xindong Wu, A.T. (ed.) Proceedings of the 3rd IEEE International Conference on Data Mining. IEEE Computer Society, Los Alamitos (November 2003)
Dinitz, Y., Itai, A., Rodeh, M.: On an Algorithm of Zemlyachenko for Subtree Isomorphism. Inf. Process. Lett. 70(3), 141–146 (1999)
Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)
Jahn, K., Kramer, S.: Optimizing gSpan for Molecular Datasets. In: Proceedings of the Third International Workshop on Mining Graphs, Trees and Sequences 2005, vol. 13(5), pp. 509–523 (2002)
Optimized gSpan algorithm for molecular databases implementation, http://wwwkramer.in.tum.de/research/pubs/jahn_mgts05
Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 313–320 (2001)
MacArthur, B.D., Snchez-Garca, R.J., Anderson, J.W.: Symmetry in complex networks. Discrete Applied Mathematics 156(18), 3525–3531
LibTW tree decomposition SW library, http://www.treewidth.com
Lin, X., Liu, C., Zhang, Y., Zhou, X.: Efficiently Computing Frequent Tree-Like Topology Patterns in a Web Environment. In: Proceedings of 31st Int. Conf. on Tech. of Object-Oriented Language and Systems (1998)
Robertson, N., Seymour, P.D.: Graph minors III: Planar tree-width. Journal of Combinatorial Theory, Series B 36, 49–64
Rckert, U., Kramer, S.: Frequent Free Tree Discovery in Graph Data. In: Proceedings of the ACM Symposium on Applied Computing, pp. 564–570 (2004)
Srinivasan, A., King, R.D., Bristol, D.W.: An assessment of submissions made to the Predictive Toxicology Evaluation Challenge. In: Proc. 16th Int. Joint Conf. on Artificial Intelligence, IJCAI 1999, Stockholm, Sweden, pp. 270–275. Morgan Kaufmann, San Francisco (1999)
Wang, C., Zhu, Y., Wu, T., Wang, W., Shi, B.: Constraint-Based Graph Mining in Large Database. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 133–144. Springer, Heidelberg (2005)
Xiao, Y., Wu, W., Wang, H., Xiong, M., Wang, W.: Symmetry-based Structure Entropy of Complex Networks. Physica A 387, 2611–2619 (2008)
Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: ICDM 2002, pp. 721–724 (2002)
Yan, X., Han, J.: Closegraph, Mining closed frequent graph patterns. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2003), Washington DC, USA, pp. 286–295. ACM Press, New York (2003)
Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the 8th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press, New York (2002)
Zhu, F., Yan, X., Han, J., Yu, P.S.: gPrune: A Constraint Pushing Framework for Graph Pattern Mining. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 388–400. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vanetik, N. (2010). Mining Graphs with Constraints on Symmetry and Diameter. In: Shen, H.T., et al. Web-Age Information Management. WAIM 2010. Lecture Notes in Computer Science, vol 6185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16720-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-16720-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16719-5
Online ISBN: 978-3-642-16720-1
eBook Packages: Computer ScienceComputer Science (R0)