Skip to main content

Mining Graphs with Constraints on Symmetry and Diameter

  • Conference paper
Web-Age Information Management (WAIM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6185))

Included in the following conference series:

Abstract

The area of graph mining bears great importance when dealing with semi-structured data such as XML, text and chemical and genetic data. One of the main challenges of this field is that out of many resulting frequent subgraphs it is hard to find interesting ones. We propose a novel algorithm that finds subgraphs of limited diameter and high symmetry. These subgraphs represent the more structurally interesting patterns in the database. Our approach also allows to decrease processing time drastically by employing the tree decomposition structure of database graphs during the discovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989); 51–58 (2002)

    Google Scholar 

  2. Bern, M., Lawler, E., Wong, A.: Linear-time computation of optimal subgraphs of decomposable graphs. Journal of Algorithms 8(2), 216–235 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 105–118. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borgelt, C., Meinl, T., Berthold, M.: Advanced pruning strategies to speed up closed molecular fragments. In: Proc. IEEE Conf. on Systems, Man and Cybernetics (SMC 2004), The Hague, Netherlands. IEEE Press, Piscataway (2004)

    Google Scholar 

  6. Chi, Y., Yang, Y., Muntz, R.R.: Indexing and mining free trees. In: Xindong Wu, A.T. (ed.) Proceedings of the 3rd IEEE International Conference on Data Mining. IEEE Computer Society, Los Alamitos (November 2003)

    Google Scholar 

  7. Dinitz, Y., Itai, A., Rodeh, M.: On an Algorithm of Zemlyachenko for Subtree Isomorphism. Inf. Process. Lett. 70(3), 141–146 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Å»ytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Jahn, K., Kramer, S.: Optimizing gSpan for Molecular Datasets. In: Proceedings of the Third International Workshop on Mining Graphs, Trees and Sequences 2005, vol. 13(5), pp. 509–523 (2002)

    Google Scholar 

  10. Optimized gSpan algorithm for molecular databases implementation, http://wwwkramer.in.tum.de/research/pubs/jahn_mgts05

  11. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 313–320 (2001)

    Google Scholar 

  12. MacArthur, B.D., Snchez-Garca, R.J., Anderson, J.W.: Symmetry in complex networks. Discrete Applied Mathematics 156(18), 3525–3531

    Google Scholar 

  13. LibTW tree decomposition SW library, http://www.treewidth.com

  14. Lin, X., Liu, C., Zhang, Y., Zhou, X.: Efficiently Computing Frequent Tree-Like Topology Patterns in a Web Environment. In: Proceedings of 31st Int. Conf. on Tech. of Object-Oriented Language and Systems (1998)

    Google Scholar 

  15. Robertson, N., Seymour, P.D.: Graph minors III: Planar tree-width. Journal of Combinatorial Theory, Series B 36, 49–64

    Google Scholar 

  16. Rckert, U., Kramer, S.: Frequent Free Tree Discovery in Graph Data. In: Proceedings of the ACM Symposium on Applied Computing, pp. 564–570 (2004)

    Google Scholar 

  17. Srinivasan, A., King, R.D., Bristol, D.W.: An assessment of submissions made to the Predictive Toxicology Evaluation Challenge. In: Proc. 16th Int. Joint Conf. on Artificial Intelligence, IJCAI 1999, Stockholm, Sweden, pp. 270–275. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  18. Wang, C., Zhu, Y., Wu, T., Wang, W., Shi, B.: Constraint-Based Graph Mining in Large Database. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 133–144. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Xiao, Y., Wu, W., Wang, H., Xiong, M., Wang, W.: Symmetry-based Structure Entropy of Complex Networks. Physica A 387, 2611–2619 (2008)

    Article  Google Scholar 

  20. Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: ICDM 2002, pp. 721–724 (2002)

    Google Scholar 

  21. Yan, X., Han, J.: Closegraph, Mining closed frequent graph patterns. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2003), Washington DC, USA, pp. 286–295. ACM Press, New York (2003)

    Google Scholar 

  22. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proceedings of the 8th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press, New York (2002)

    Google Scholar 

  23. Zhu, F., Yan, X., Han, J., Yu, P.S.: gPrune: A Constraint Pushing Framework for Graph Pattern Mining. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 388–400. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vanetik, N. (2010). Mining Graphs with Constraints on Symmetry and Diameter. In: Shen, H.T., et al. Web-Age Information Management. WAIM 2010. Lecture Notes in Computer Science, vol 6185. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16720-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16720-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16719-5

  • Online ISBN: 978-3-642-16720-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics