Skip to main content

Mining Regulatory Elements in Non-coding Regions of Arabidopsis thaliana

  • Conference paper
Computational Systems-Biology and Bioinformatics (CSBio 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 115))

  • 831 Accesses

Abstract

Analysis of regulatory elements (DNA motifs) in non-coding regions is considered as one crucial step to understand the regulation mechanisms of genes with similar expression patterns. With the help of accumulated gene expression data and complete genome sequences, computational approaches have been developed in the past decade to accelerate the mining task. In previous studies, we proposed a DNA motif discovery framework, named as MODEC, which incorporated the evolutionary computation (EC) searching algorithm with data filtering techniques to favor the algorithm performance. With the attempt on exploring real-world motif mining problems, we apply both MODEC and a famous discovery algorithm MEME to predict regulatory elements in different non-coding regions of co-expressed genes from the model plant Arabidopsis thaliana. Results from both MODEC and MEME show that the targeted motif patterns can be found in the expected non-coding regions of the co-expressed gene groups. As the preliminary step of this work, we investigate whether different motif patterns can be detected in the specified non-coding regions of co-expressed genes with different functional categories. The similar prediction results from MODEC and MEME demonstrate the potential of MODEC in the field of practical motif discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Galas, D.J., Schmitz, A.: DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 5, 3157–3170 (1978)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Helden, J., André, B., Collado-Vides, J.: Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281, 827–842 (1998)

    Article  PubMed  Google Scholar 

  3. Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28–36. AAAI Press, Menlo Park (1994)

    Google Scholar 

  4. Tompa, M., Li, N., Bailey, T.L., et al.: Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnology 23, 137–144 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Hu, J., Li, B., Kihara, D.: Limitations and potentials of current motif discovery algorithms. Nucleic Acids Res. 33, 4899–4913 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan, T.-M., Leung, K.-S., Lee, K.-H.: TFBS identification based on genetic algorithm with combined representations and adaptive post-processing. Bioinformatics 24, 341–349 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Li, L.P., Liang, Y., Bass, R.L.L.: GAPWM: a genetic algorithm method for optimizing a position weight matrix. Bioinformatics 23, 1188–1194 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Wei, Z., Jensen, S.T.: GAME: detecting cis-regulatory elements using a genetic algorithm. Bioinformatics 22, 1577–1584 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. Li, X., Wang, D.H.: Computational Discovery of Regulatory DNA Motifs Using Evolutionary Computation. In: CEC-IEEE 2010: IEEE Congress on Evolutionary Computation (accepted 2010)

    Google Scholar 

  10. Fiume, E., Christou, P., Giani, S., Breviario, D.: Introns are key regulatory elements of rice tubulin expression. Planta 218, 693–704 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., Kellis, M.: Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434, 338–345 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meinke, D.W., Cherry, J.M., Dean, C., Rounsley, S.D., Koornneef, M.: Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662–682 (1998)

    Article  CAS  PubMed  Google Scholar 

  13. Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T.Z., Garcia-Hernandez, M., Foerster, H., Li, D., Meyer, T., Muller, R., Ploetz, L., et al.: The arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res. 36, D1009–D1014 (2008)

    Article  Google Scholar 

  14. Vandepoele, K., Quimbaya, M., Casneuf, T., De Veylder, L., Van de Peer, Y.: Unraveling transcriptional control in arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol. 150, 535–546 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D.H., Lee, N.K.: MISCORE: mismatch-based matrix similarity scores for DNA motif detection. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 478–485. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Benos, P.V., Bulyk, M.L., Stormo, G.D.: Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res. 30, 4442–4451 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, D.H.: Characterization of regulatory motif models. Technical Report, La Trobe University, Australia (October 2009)

    Google Scholar 

  18. Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouzé, P., Moreau, Y.: A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17, 1113–1122 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Galtier, N., Piganeau, G., Mouchiroud, D., Duret, L.: GC content evolution in mammalian genomes, the biased gene conversion hypothesis. Genetics 159, 907–911 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahony, S., Hendrix, D., Golden, A., Smith, T.J., Rokhsar, D.S.: Transcription factor binding site identification using the Self-Organizing Map. Bioinformatics 21, 1807–1814 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X., Wang, D. (2010). Mining Regulatory Elements in Non-coding Regions of Arabidopsis thaliana . In: Chan, J.H., Ong, YS., Cho, SB. (eds) Computational Systems-Biology and Bioinformatics. CSBio 2010. Communications in Computer and Information Science, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16750-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16750-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16749-2

  • Online ISBN: 978-3-642-16750-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics