Abstract
A new decision procedure for Propositional Projection Temporal Logic (PPTL) is proposed which is an improvement to the decision procedure given in [4]. The main contribution of the paper is as follows: (1) the relationship between paths in the NFG of a formula R and its models is established and proved; (2) a new Labeled NFG (LNFG) with a set of labels (propositions) is defined; (3) given a formula R, an LNFG of R can be generated by the new decision algorithm, and all models of R can be found; (4) based on the new decision procedure, an improved model checking algorithm is presented and implemented.
This research is supported by the NSFC Grant No. 61003078, 60433010, 60873018 and 60910004, National Program on Key Basic Research Project of China (973 Program) Grant No.2010CB328102 and SRFDP Grant 200807010012.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z. Math. Logik Grund. Math. 9, 67–96 (1963)
Moszkowski, B.: Reasoning about digital circuits, Ph.D Thesis, Department of Computer Science, Stanford University, TRSTAN-CS-83-970 (1983)
Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal Logic Programming. PhD thesis, University of Newcastle Upon Tyne (May 1996)
Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection Temporal Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)
Wang, H., Xu, Q.: Temporal logics over infinite intervals. Technical Report 158, UNU/IIST, Macau (1999)
Moszkowski, B.C.: A Complete Axiomatization of Interval Temporal Logic with Infinite Time. In: 15th Annual IEEE Symposium on Logic in Computer Science. LICS, p. 241 (2000)
Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of duration. Information Processing Letters 40(5), 269–275 (1991)
Bowman, H., Thompson, S.: A decision procedure and complete axiomatization of interval temporal logic with projection. Journal of logic and Computation 13(2), 195–239 (2003)
Dutertre, B.: Complete proof systems for first order interval temporal logic. In: Proceedings of LICS 1995, pp. 36–43 (1995)
Clark, M., Gremberg, O., Peled, A.: Model Checking. The MIT Press, Cambridge (2000)
Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. Found. of Comp. Sci., pp. 46–57 (1977)
Tian, C., Duan, Z.: Propositional Projection Temporal Logic, Büchi Automata and ω-Expressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 47–58. Springer, Heidelberg (2008)
Tian, C., Duan, Z.: Complexity of Propositional Projection Temporal Logic with Star. Mathematical Structure in Computer Science 19(1), 73–100 (2009)
Winskel, G.: The Formal Semantics of Programming Languages. In: Foundations of Computing. The MIT Press, Cambridge
Vardi, M.Y.: The Büchi Complementation Saga. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)
Katoen, J.-P.: Concepts, Algorithms, and Tools for Model Checking. Lecture Notes of the Course Mechanised Validation of Parrel Systems (1999)
Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic Based on SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 246–265. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duan, Z., Tian, C. (2010). An Improved Decision Procedure for Propositional Projection Temporal Logic. In: Dong, J.S., Zhu, H. (eds) Formal Methods and Software Engineering. ICFEM 2010. Lecture Notes in Computer Science, vol 6447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16901-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-16901-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16900-7
Online ISBN: 978-3-642-16901-4
eBook Packages: Computer ScienceComputer Science (R0)