Skip to main content

Efficient Algorithms for Eulerian Extension

  • Conference paper
Graph Theoretic Concepts in Computer Science (WG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6410))

Included in the following conference series:

Abstract

Eulerian extension problems aim at making a given (directed) (multi-)graph Eulerian by adding a minimum-cost set of edges (arcs). These problems have natural applications in scheduling and routing and are closely related to the Chinese Postman and Rural Postman problems. Our main result is to show that the NP-hard Weighted Multigraph Eulerian Extension is fixed-parameter tractable with respect to the number k of extension edges (arcs). For an n-vertex multigraph, the corresponding running time amounts to O(4k ·n 3). This implies a fixed-parameter tractability result for the “equivalent” Rural Postman problem. In addition, we present several polynomial-time algorithms for natural Eulerian extension problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. http://jorlin.scripts.mit.edu/Solution_Manual.html

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  3. Boesch, F.T., Suffel, C., Tindell, R.: The spanning subgraphs of Eulerian graphs. J. Graph Theory 1(1), 79–84 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  6. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems part I: The chinese postman problem. Oper. Res. 43(2), 231–242 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems part II: The rural postman problem. Oper. Res. 43(3), 399–414 (1995)

    Article  MATH  Google Scholar 

  8. Fellows, M.: Towards fully multivariate algorithmics: Some new results and directions in parameter ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  10. Frederickson, G.N.: Approximation algorithms for some postman problems. J. ACM 26(3), 538–554 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Höhn, W., Jacobs, T., Megow, N.: On Eulerian extension problems and their application to sequencing problems. Technical Report 008, Combinatorial Optimization and Graph Algorithms, TU Berlin (2009)

    Google Scholar 

  12. Lenstra, J.K., Kan, A.H.G.R.: On general routing problems. Networks 6(3), 273–280 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lesniak, L., Oellermann, O.R.: An Eulerian exposition. J. Graph Theory 10(3), 277–297 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113, 109–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  16. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS, IBFI Dagstuhl, Germany. LIPIcs, vol. 5, pp. 17–32 (2010)

    Google Scholar 

  17. Orloff, C.S.: On general routing problems: Comments. Networks 6(3), 281–284 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Weller, M., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: On making directed graphs transitive. In: Dehne, F., et al. (eds.) Proc. 11th WADS. LNCS, vol. 5664, pp. 542–553. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorn, F., Moser, H., Niedermeier, R., Weller, M. (2010). Efficient Algorithms for Eulerian Extension. In: Thilikos, D.M. (eds) Graph Theoretic Concepts in Computer Science. WG 2010. Lecture Notes in Computer Science, vol 6410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16926-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16926-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16925-0

  • Online ISBN: 978-3-642-16926-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics