Abstract
Eulerian extension problems aim at making a given (directed) (multi-)graph Eulerian by adding a minimum-cost set of edges (arcs). These problems have natural applications in scheduling and routing and are closely related to the Chinese Postman and Rural Postman problems. Our main result is to show that the NP-hard Weighted Multigraph Eulerian Extension is fixed-parameter tractable with respect to the number k of extension edges (arcs). For an n-vertex multigraph, the corresponding running time amounts to O(4k ·n 3). This implies a fixed-parameter tractability result for the “equivalent” Rural Postman problem. In addition, we present several polynomial-time algorithms for natural Eulerian extension problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)
Boesch, F.T., Suffel, C., Tindell, R.: The spanning subgraphs of Eulerian graphs. J. Graph Theory 1(1), 79–84 (1977)
Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems part I: The chinese postman problem. Oper. Res. 43(2), 231–242 (1995)
Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems part II: The rural postman problem. Oper. Res. 43(3), 399–414 (1995)
Fellows, M.: Towards fully multivariate algorithmics: Some new results and directions in parameter ecology. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
Frederickson, G.N.: Approximation algorithms for some postman problems. J. ACM 26(3), 538–554 (1979)
Höhn, W., Jacobs, T., Megow, N.: On Eulerian extension problems and their application to sequencing problems. Technical Report 008, Combinatorial Optimization and Graph Algorithms, TU Berlin (2009)
Lenstra, J.K., Kan, A.H.G.R.: On general routing problems. Networks 6(3), 273–280 (1976)
Lesniak, L., Oellermann, O.R.: An Eulerian exposition. J. Graph Theory 10(3), 277–297 (1986)
Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113, 109–128 (2001)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS, IBFI Dagstuhl, Germany. LIPIcs, vol. 5, pp. 17–32 (2010)
Orloff, C.S.: On general routing problems: Comments. Networks 6(3), 281–284 (1976)
Weller, M., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: On making directed graphs transitive. In: Dehne, F., et al. (eds.) Proc. 11th WADS. LNCS, vol. 5664, pp. 542–553. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dorn, F., Moser, H., Niedermeier, R., Weller, M. (2010). Efficient Algorithms for Eulerian Extension. In: Thilikos, D.M. (eds) Graph Theoretic Concepts in Computer Science. WG 2010. Lecture Notes in Computer Science, vol 6410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16926-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-16926-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16925-0
Online ISBN: 978-3-642-16926-7
eBook Packages: Computer ScienceComputer Science (R0)