Abstract
Cluster Editing is a classical graph theoretic approach to tackle the problem of data set clustering: it consists of modifying a similarity graph into a disjoint union of cliques, i.e, clusters. As pointed out in a number of recent papers, the cluster editing model is too rigid to capture common features of real data sets. Several generalizations have thereby been proposed. In this paper, we introduce (p,q)-cluster graphs, where each cluster misses at most p edges to be a clique, and there are at most q edges between a cluster and other clusters. Our generalization is the first one that allows a large number of false positives and negatives in total, while bounding the number of these locally for each cluster by p and q. We show that recognizing (p,q)-cluster graphs is NP-complete when p and q are input. On the positive side, we show that (0,q)-cluster, (p,1)-cluster, (p,2)-cluster, and (1,3)-cluster graphs can be recognized in polynomial time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Dor, Z.Y.A., Shamir, R.: Clustering gene expression patterns. J.Comput. Biol. 6(3/4), 281–292 (1999)
Böcker, S., Briesemeister, S., Bui, Q.A., Truß, A.: Going weighted: Parameterized algorithms for cluster editing. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 1–12. Springer, Heidelberg (2008)
Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)
Chesler, E., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., Hsu, H., Mountz, J., Baldwin, N., Langston, M., Threadgill, D., Manly, K., Williams, R.: Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genetics 37(3), 233–242 (2005)
Damaschke, P.: Fixed-parameter enumerability of cluster editing and related problems. Theory of Computing Systems, TOCS 46(2), 261–283 (2010)
Dehne, F., Langston, M., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)
Fellows, M., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 516–526. Springer, Heidelberg (2009)
Frigui, H., Nasraoui, O.: Simultaneous clustering and dynamic key-word weighting for text documents. In: Berry, M. (ed.) Survey of Text Mining, pp. 45–70. Springer, Heidelberg (2004)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39, 321–347 (2004)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: fixed-parameter algorithm for clique generation. Theory of Computing Systems 38, 373–392 (2005)
Guo, J., Kanj, I.A., Komusiewicz, C., Uhlmann, J.: Editing graphs into disjoint unions of dense clusters. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 583–593. Springer, Heidelberg (2009)
Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 226–239. Springer, Heidelberg (2009)
Hartigan, J.: Clustering Algorithms. John Wiley and Sons, Chichester (1975)
Charikar, A.M., Guruswami, V.: Clustering with qualitative information. Journal of Computer and System Sciences 71, 360–383 (2005)
Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. Private communication (2010)
Xu, D.W.R.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16(3), 645–678 (2005)
Sharan, R.R., Maron-Katz, A.: Click and expander: a system for clustering and visualizing gene expression data. Bioinformatics 19(14), 1787–1799 (2003)
Scholtens, D., Vidal, M., Gentlemand, R.: Local modeling of global interactome networks. Bioinformatics 21, 3548–3557 (2005)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)
Wu, R.L.Z.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heggernes, P., Lokshtanov, D., Nederlof, J., Paul, C., Telle, J.A. (2010). Generalized Graph Clustering: Recognizing (p,q)-Cluster Graphs. In: Thilikos, D.M. (eds) Graph Theoretic Concepts in Computer Science. WG 2010. Lecture Notes in Computer Science, vol 6410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16926-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-16926-7_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16925-0
Online ISBN: 978-3-642-16926-7
eBook Packages: Computer ScienceComputer Science (R0)