Abstract
We provide exact algorithms for enumeration and counting problems on edge colorings and total colorings of graphs, if the number of (available) colors is fixed and small. For edge 3-colorings the following is achieved: there is a branching algorithm to enumerate all edge 3-colorings of a connected cubic graph in time O *(25n/8). This implies that the maximum number of edge 3-colorings in an n-vertex connected cubic graph is O *(25n/8). Finally, the maximum number of edge 3-colorings in an n-vertex connected cubic graph is lower bounded by 12n/10. Similar results are achieved for total 4-colorings of connected cubic graphs. We also present dynamic programming algorithms to count the number of edge k-colorings and total k-colorings for graphs of bounded pathwidth. These algorithms can be used to obtain fast exact exponential time algorithms for counting edge k-colorings and total k-colorings on graphs, if k is small.
The first author has been supported by EPSRC under project EP/G043434/1. The second and third author have been supported by ANR Blanc AGAPE (ANR-09-BLAN-0159-03).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54, 168–204 (2005)
Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 575–582. IEEE, Los Alamitos (2006)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings, arXiv:1007.1161v1 (2010)
Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. J. Algorithms 11, 631–643 (1990)
Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 329–337. SIAM, Philadelphia (2001)
Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of lambda-labelings. Discrete Applied Mathematics 113, 59–72 (2001)
Fomin, F.V., Gaspers, S., Saurabh, S.: Improved exact algorithms for counting 3- and 4-colorings. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 65–74. Springer, Heidelberg (2007)
Fomin, F.V., Gaspers, S., Saurabh, S.: On two techniques of combining branching and treewidth. Algorithmica 54, 181–207 (2009)
Fomin, F., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)
Fomin, F.V., Grandoni, F., Pyatkin, A., Stepanov, A.: Combinatorial bounds via Measure and Conquer: Bounding minimal dominating sets and applications. ACM Transactions on Algorithms 5(1), Article 9 (2008)
Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Process. Lett. 97, 191–196 (2006)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-completeness. Freeman, New York (1979)
Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)
Koivisto, M.: An O(2n) Algorithm for graph coloring and other partitioning problems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 2nd edn., pp. 583–590. IEEE, Los Alamitos (2006)
Kowalik, L.: Improved edge-coloring with three colors. Theoret. Comp. Sci. 410, 3733–3742 (2009)
Král, D.: An exact algorithm for the channel assignment problem. Discrete Applied Mathematics 145, 326–331 (2005)
Kratochvíl, J., Kratsch, D., Liedloff, M.: Exact algorithms for L(2,1)-labeling of graphs. In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 513–524. Springer, Heidelberg (2007)
Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
Rosenfeld, M.: On the total coloring of certain graphs. Israel Journal of Mathematics 9, 396–402 (1971)
Sánchez-Arroyo, A.: Determining the total colouring number is NP-hard. Discrete Mathematics 78, 315–319 (1989)
Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Anal., 25–30 (1964) (in Russian)
Zhou, X., Nishizeki, T.: Optimal parallel algorithm for edge-coloring partial k-trees with bounded degrees. In: Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks, pp. 167–174. IEEE, Los Alamitos (1994)
Zhou, X., Nakano, S., Nishizeki, T.: Edge-coloring partial k-trees. J. Algorithms 21, 598–617 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Golovach, P.A., Kratsch, D., Couturier, JF. (2010). Colorings with Few Colors: Counting, Enumeration and Combinatorial Bounds. In: Thilikos, D.M. (eds) Graph Theoretic Concepts in Computer Science. WG 2010. Lecture Notes in Computer Science, vol 6410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16926-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-16926-7_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16925-0
Online ISBN: 978-3-642-16926-7
eBook Packages: Computer ScienceComputer Science (R0)