Skip to main content

Colorings with Few Colors: Counting, Enumeration and Combinatorial Bounds

  • Conference paper
Graph Theoretic Concepts in Computer Science (WG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6410))

Included in the following conference series:

  • 935 Accesses

Abstract

We provide exact algorithms for enumeration and counting problems on edge colorings and total colorings of graphs, if the number of (available) colors is fixed and small. For edge 3-colorings the following is achieved: there is a branching algorithm to enumerate all edge 3-colorings of a connected cubic graph in time O *(25n/8). This implies that the maximum number of edge 3-colorings in an n-vertex connected cubic graph is O *(25n/8). Finally, the maximum number of edge 3-colorings in an n-vertex connected cubic graph is lower bounded by 12n/10. Similar results are achieved for total 4-colorings of connected cubic graphs. We also present dynamic programming algorithms to count the number of edge k-colorings and total k-colorings for graphs of bounded pathwidth. These algorithms can be used to obtain fast exact exponential time algorithms for counting edge k-colorings and total k-colorings on graphs, if k is small.

The first author has been supported by EPSRC under project EP/G043434/1. The second and third author have been supported by ANR Blanc AGAPE (ANR-09-BLAN-0159-03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54, 168–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 575–582. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings, arXiv:1007.1161v1 (2010)

    Google Scholar 

  4. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. J. Algorithms 11, 631–643 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 329–337. SIAM, Philadelphia (2001)

    Google Scholar 

  6. Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of lambda-labelings. Discrete Applied Mathematics 113, 59–72 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fomin, F.V., Gaspers, S., Saurabh, S.: Improved exact algorithms for counting 3- and 4-colorings. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 65–74. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Fomin, F.V., Gaspers, S., Saurabh, S.: On two techniques of combining branching and treewidth. Algorithmica 54, 181–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin, F., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Fomin, F.V., Grandoni, F., Pyatkin, A., Stepanov, A.: Combinatorial bounds via Measure and Conquer: Bounding minimal dominating sets and applications. ACM Transactions on Algorithms 5(1), Article 9 (2008)

    Google Scholar 

  11. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Process. Lett. 97, 191–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  13. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koivisto, M.: An O(2n) Algorithm for graph coloring and other partitioning problems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 2nd edn., pp. 583–590. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  15. Kowalik, L.: Improved edge-coloring with three colors. Theoret. Comp. Sci. 410, 3733–3742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Král, D.: An exact algorithm for the channel assignment problem. Discrete Applied Mathematics 145, 326–331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kratochvíl, J., Kratsch, D., Liedloff, M.: Exact algorithms for L(2,1)-labeling of graphs. In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 513–524. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosenfeld, M.: On the total coloring of certain graphs. Israel Journal of Mathematics 9, 396–402 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sánchez-Arroyo, A.: Determining the total colouring number is NP-hard. Discrete Mathematics 78, 315–319 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Anal., 25–30 (1964) (in Russian)

    Google Scholar 

  22. Zhou, X., Nishizeki, T.: Optimal parallel algorithm for edge-coloring partial k-trees with bounded degrees. In: Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks, pp. 167–174. IEEE, Los Alamitos (1994)

    Chapter  Google Scholar 

  23. Zhou, X., Nakano, S., Nishizeki, T.: Edge-coloring partial k-trees. J. Algorithms 21, 598–617 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golovach, P.A., Kratsch, D., Couturier, JF. (2010). Colorings with Few Colors: Counting, Enumeration and Combinatorial Bounds. In: Thilikos, D.M. (eds) Graph Theoretic Concepts in Computer Science. WG 2010. Lecture Notes in Computer Science, vol 6410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16926-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16926-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16925-0

  • Online ISBN: 978-3-642-16926-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics