Skip to main content

Subgraphs Generating Algorithm for Obtaining Set of Node-Disjoint Paths in Terrain-Based Mesh Graphs

  • Conference paper
Motion in Games (MIG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6459))

Included in the following conference series:

  • 1324 Accesses

Abstract

In the article an algorithm (SGDP) for solving node-disjoint shortest K paths problem in mesh graphs is presented. The mesh graph can represent e.g. a discrete terrain model in a battlefield simulation. Arcs in the graph geographically link adjacent nodes only. The algorithm is based on an iterative subgraph generating procedure inside the mesh graph (for finding a single path from among K paths single subgraph is generated iteratively) and the usage of different strategies to find (and improve) the solution. Some experimental results with a discussion of the complexity and accuracy of the algorithm are shown in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, A., Kleinberg, J., Williamson, D.: Node-Disjoint Paths on the Mesh and a New Trade-Off in VLSI Layout. SIAM Journal on Computing 29(4), 1321–1333 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, R., Chung, F., Sen, A., Xue, G.: On Disjoint Path Pairs with Wavelength Continuity Constraint in WDM Networks. In: Proceedings of the IEEE INFOCOM 2004, Hong Kong (China), March 7-11, pp. 524–535 (2004)

    Google Scholar 

  3. Eppstein, D.: Finding common ancestors and disjoint paths in DAGs, Technical Report 95-52, Department of Information and Comp. Science, Univ. of California, Irvine (1995)

    Google Scholar 

  4. Eppstein, D.: Finding the K shortest Paths. SIAM J. Computing 28(2), 652–673 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Even, S., Itai, A., Shamir, A.: On the complexity of time-table and multicommodity flow problems. SIAM Journal on Computing 5, 691–703 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ibaraki, T.: Algorithms for obtaining shortest paths visiting specified nodes. SIAM Review 15(2), Part 1, 309–317 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jongh, A., Gendreau, M., Labbe, M.: Finding disjoint routes in telecommunications networks with two technologies. Operations Research 47, 81–92 (1999)

    Article  MATH  Google Scholar 

  8. Li, C.L., McCormick, S.T., Simchi-Levi, D.: The complexity of finding two disjoint paths with min-max objective function. Discrete Applied Math. 26, 105–115 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, C.L., McCormick, S.T., Simchi-Levi, D.: Findind disjoint paths with different path-costs: Complexity and algorithms. Networks 22, 653–667 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Perl, Y., Shiloach, Y.: Finding two disjoint paths between two pairs of vertices in a graph. Journal of the ACM 25, 1–9 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Petty, M.D.: Computer generated forces in Distributed Interactive Simulation. In: Proceedings of the Conference on Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace Environment, The International Society for Optical Engineering, Orlando, pp. 251–280 (1995)

    Google Scholar 

  12. Sherali, H., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of disjoint paths problem: complexity, models and algorithms. Networks 31, 259–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schrijver, A., Seymour, P.: Disjoint paths in a planar graph – a general theorem. SIAM Journal of Discrete Mathematics 5(1), 112–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Suurballe, J. W.: Disjoint paths in a network. Networks 4, 125–145 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint paths. Networks 14, 325–336 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tarapata, Z.: Multi-paths optimization in unreliable time-dependent networks. In: Proceedings of the 2nd NATO Regional Conference on Military Communication and Information Systems, Zegrze (Poland), October 04-06, vol. I, pp. 181–189 (2000)

    Google Scholar 

  17. Tarapata, Z.: Approximation Scheduling Algorithms for Solving Multi-objects Movement Synchronization Problem. In: ICANNGA 2009. LNCS, vol. 5495, pp. 577–589. Springer, Heidelberg (2009)

    Google Scholar 

  18. Tarapata, Z.: Multiresolution models and algorithms of movement planning and their application for multiresolution battlefield simulation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS, vol. 5991, pp. 378–389. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Tarapata, Z.: Movement Simulation and Management of Cooperating Objects in CGF Systems: a Case Study. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS, vol. 6070, pp. 293–304. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Tuft, D., Gayle, R., Salomon, B., Govindaraju, N., Lin, M., Manocha, D.: Accelerating Route Planning And Collision Detection for Computer Generated Forces Using GPUS. In: Proc. of Army Science Conference, Orlando (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tarapata, Z., Wroclawski, S. (2010). Subgraphs Generating Algorithm for Obtaining Set of Node-Disjoint Paths in Terrain-Based Mesh Graphs. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer Science, vol 6459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16958-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16958-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16957-1

  • Online ISBN: 978-3-642-16958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics